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Abstract —In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a prod-
uct of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D)
radiative transfer theory in a way that easily swamps any available computational resources. Fortunately,
the far simpler diffusion (or P theory becomes more accurate as the scattering intensifies, and allows for
some analytical progress as well as computational efficiency. After surveying current approaches to 3D
solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive
transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmit-
tance) to the one-point covariance of internal fluctuations in particle density and in radiative flux. These
flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative chan-
neling. The R theory proves even more powerful when the photon diffusion process unfolds in time as well
as space. For slab geometry, characteristic times and lengths that describe normal and transverse trans-
port phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite
images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing
techniques, and (c) propose new ones both active and passive.

I. MOTIVATION, CONTEXT, AND OVERVIEW the standpoint of their basic optical properties, both at
the macroscopic level that affects the radiation budget
Low-altitude cloudsin the planetary boundary layer and at the microscale where turbulence prevails. Un-
are made of liquid water droplets in sizes and concentrgesolved structure also makes the remote sensing of cloud
tions that make them highly reflective in much of the so-properties a difficult task; even if the fine cloud structure
lar spectrum. In turn, this gives these clouds a criticals resolved by high-resolution imaging techniques, the
role in balancing the Earth's radiative budget, so they havghree-dimensiondBD) radiative transfer it beckons can-
a first-order effect on climate and weathenfortu-  not be applied operationally in the data processing. So
nately for numerical climate and weather modelers, cloudghe treatment of clouds in all aspects of atmospheric ra-
come in many shapes and forms. They are extremely corghiation science is a question of approximation, and de-
plex structures not well understood in terms of their fortermining the limitations of a given approximation is
mation and life-cycle. They are not better understood frongenerally nontrivial.
High-altitude cloudgcirrus) are out of the scope of
*E-mail: adavis@lanl.gov this study not because their optics are any simpler but
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because they are generally too thin optically to supporthat makes no outright hypothesis on the radiance field.
diffusive radiation transport. The major source ofln Sec. Ill, we pose the general albedo problem in
complication in these clouds is that they are made of icseteady state using both radiative transfer and diffusion
crystals that are not necessarily randomly oriented. Stheories in a geometry suitable for atmospheric applica-
the single-scattering properties of cirrus are difficult totions: collimated solar beam impinging from above onto
measure, to compute, and to incorporate into multiple scag dense cloud layer. This problem is the focus of the
tering modelg. next three sections, each introducing a successively bet-
In the radiative transfer theorist’s mindhighly-  ter approach to its solution. Section IV uses the all-too-
reflective automatically translates taweakly absorbing standard homogeneity assumption, thus neglecting all
and dominated by multiple scatteringrhich, in turn, is  horizontal variability. In Sec. V we make use of the
an invitation to apply diffusiorior P;) theory to the larg- closed-form homogeneous solution but apply it locally.
est possible extent. This is conventional wisdom in neuThis independent pixel assumption is widely used in at-
tron transport science and it will be our strategy here. Anospheric radiation, although not necessarily at a scale
detailed survey of cloud radiation literature, even lim-where it works best; we explore its general predictions
ited to 3D theory, would be overwhelming. However, afor large-scale averages and their consequences for cli-
representative survey of prior applications of 3D pho-mate. Section VI uses 3D diffusion theory to derive a
ton diffusion theory in the geophysical literature is ingeneral result that links the change in domain-averaged
order. In this community at least, it was fully realized flux caused by thegarbitrary variability to the cross-
that diffusion andP; theories were in fact equivalent correlation between fluctuations in the extinction and
until about the time Preisendorfer clarified this in hislocal flux fields. This result illustrates the general mech-
1976 text$ in hydrological optics. So early papers, start-anism by which radiation flow interacts with fluctua-
ing with Giovanell* in 1959, systematically start with tions in density that we call radiative channeling.
the general radiative transfer equation and rederive th8ection VIl is devoted to characteristic timescales and
formulas of photon diffusion before turning to an appli- related length-scales of importance in diffusive trans-
cation. The problem of solar illumination, of particular port through finite slab media, with and without absorp-
interest here, has been worked out analytically for sevtion. In turn, these scales for diffusion are used in Sec. VIII
eral 3D geometries. In plane-parallel geometry, the sineto interpret some robust features observed in the spatial
wave cloud that we use extensively further on as astatistics of remotely sensed cloud radiance fields and,
illustration was studied by perturbation analystsand from there, to set bounds on the applicability of the
exactly by eigenfunction analy<iSeveral isolated cloud independent-pixel approximation. In Sec. IX, we sum-
problems were similarly solved: homogeneous finite-marize our findings, describe some work-in-progress that
height cylinders, homogeneous rectangular parallele-uses 3D diffusion concepts, and we connect with stochas-
pipeds® and full and hollow spherésinternal diffuse tic radiative transfefas it has been applied to problems
sources are also of interest in thermal infratHRl) stud-  in atmospheric radiation by G. C. Pomraning and frignds
ies® The trend is now to develop a general-purpose
numerical code that implements a steady-state dif-
fusion-based solution for an arbitrary distribution of Il. RADIATIVE TRANSFER WITH
scatteringabsorbing material and both thermal and so- MULTIPLE SCATTERING
lar source term&!12 Steady localized sources have also
elicited some intereg® In most of these studies, diffu-

sion theory is presented as a viable alternative to exagk jnterest throughout this study and recall some basic

transport methods in perennial efficiency-versus-accuraGygits from radiative transfer and diffusion transport
trade-off problems, and the solutions are generally valg,oqries.

idated against Monte Carlo or grid-based codes. The mo-

In this section, we introduce notations for quantities

tivation behind almost all atmospheric radiation theories, ILA. Radiative Transfer in 31 Dimensions
photon diffusion included, is optical apdr thermal re-
mote sensindin which case radiances are sougand We seek the time-dependent radiance fiétgx, Q) =

climate (in which case fluxes are of primary intergst 0 as a function of propagation directiagh on the unit
However, the lightning community has recently showedsphere=, at a pointx in a domain M ofR?3, and at time
interest in time-dependent diffusion methods for localt. We assume théoper set M to be convex, meaning
ized source? a problem that is also of interest in cloud that exiting rays can not reenter the medium. This last
probing with lidar(light radap.t® assumption simplifies formulation but does not actually
The paper is organized as follows. In Sec. I, werestrict the generality of our discussion because, at least
introduce the required notations in radiative transfemup to the point where we take the diffusion limit, we can
with multiple scattering and survey the connectionsalways setr(x) = 0 in some areas of M.
between this incarnation of linear transport theory and Inside the scatterin@bsorbing optical medium M,
diffusion theory, including a recently uncovered onethe radiance field is determined ¥y’
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1. The integrodifferential radiative transfer equa-(&) 1 the effective mfp in a homogeneous medium with

tion (RTE):
o]
cl—+0-V]|l
ot
= —o (Xl +as(x)fp(Q-Q’)I(t,x,Q’)dQ’

+f(t,%x,Q) , 1
where the source terit, x, Q) is specified.

2. Boundary condition$BCs in the following if
M # R3, specifically,

I(t,x,Q) is given, for allt ,

where

the same average extinction. Under some circumstances,
¢ = 1/0, which is, in essence, the mean mfp. So extinc-
tion only determines a local mfp, the mfp the photons
would have in a homogenous medium of equal opacity.
The quantity that is still exponentially distributédith

unit mean in 3D radiative transfer is

S

7(X,Q;8) = f o(x+Qs')ds , 3
0

the optical distance betweenandx’ = x + Qs, where
s=|x’" — x| andQ = (x’ — x)/s2 Optical distance
7(X,Q;s) is a measure of the cumulative amount of
scatteringabsorbing material as increases along the
(x,Q) beam, appropriately weighted by the photon-
matter interaction cross section. For the famous expo-

nential law to carry over to physical distansgthe
photons’ random free pathswe require proportionality
betweenr ands; i.e., o(X) is invariant in direction()
starting atx. If this is true for all(x,Q), theno (x) is
clearly uniform. Davi8 gives a more powerful proof of
this statement using characteristic-function theory in prob-
ability; moreover, he shows that 3D free-path distribu-
tions are always broader than exponential in the sense
that(s?) = 2(s)? = 2¢2; equivalently, the standard de-

" . viation of s exceeds its meafi. Throughout this paper,
Coefficientso (x) ando(x) that appear in the RTE are angular brackets-) are used to denote ensemble aver-

given nonnegative fields describing the infinitesimal pr.Ob'ages, in this case, over photon trajectories.
abilities per unit of length of photon-matter interaction An abundant source of challenging radiative trans-
along an arbitrary beam, respectively, for extinctier : g ; ;

. L L fer problems is the interaction of the Earth’s cloudy at-
ther scattering or absorptipand for scattering alone. One mosphere with solar and thermal photons, as well as radar

more optical property needs to be specified: the scatter- 7+ X ; ;
ing phase functionp(Q-Q'), assumed in this study to and lidar beams. In this case, we can think of M either as

i 2
depend only on the scattering angte=cos H(0-0); 8 S0AT FRREIEE A B @ e B e
we adopt the normalization convention, where P P ' y

(betweerz =z, = 0 andz = z,p = Z1); €ither way, we
neglect curvature effects, hence the infifilgy) extent

of the column. Some optically relevant atmospheric con-
stituents are primarily stratified, i.e., variable morezin
than inx andy; examples are well-mixed absorbing trace
gasegH,0, CO;, etc) and scattering and absorbing aero-
sol particles. Others are highly variable in all three spa-
tial directions, arguably more in the horizontal than in
the vertical in some cases—cloud droplets for instance.

XxXeEoM=M\M, and Q-n(x) <0,

n(x) being outward normal to M’s boundaBgM at x
(M denotes the closure of M

3. An initial condition if onlyt = 0 is of interest,
specifically,

1(0,x,Q) is given forx € M, andQ) € E .

fp(Q-Q’)dQ =1. (2

Note that the aforementioned problem for photons is for
mally identical tolone-group neutron transport, so apart
from some points in terminology, much of this study car-
ries over to nuclear science.

The key quantity in the RTE is the extinction field
o (X) because it controls the photon free-path distribu-
tion, at the heart of the transport problem. Its inverse is
the mean-free-patfmfp) only in one case, albeit a very L -
well-studied onew (x) is uniform in space; free paths Jhe eXt'mét']?n c%eﬁ|C|?nthcomposes as follows, for
are then exponentially distributed and thus entirely de>catiering and for absorption.
termined by the mfpf = 1/o. This restriction of the
Bouger-Beer law of exponential extinction to strictly ho-
mogeneous situations is often overlooked. In heteroge-
neous media, the actual photon mfp depends nontrivially
on the spatial correlations io(x). Letting overscores aThis can be shown from Eq1) in steady state and with-
designate spatial averages in the remainder of this papeut source terms: If Ih(X’,Q)|y—xr0s = —7(X,€;S) + con
the actual value of can only occasionally be equal to stant then we have)-VI =dI/ds= —a(x)I, and conversely.

[1.B. Scattering and Absorption

o (X) = os(X) + oa(X) ; 4)
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it is customary to define the relative probability of scat-
tering as F(t,x) = fﬂl (t,x,Q)dQ (9)
wo = M =1, (5) on the other hand. This is equivalent to a spherical-
o (X) harmonic(P,) expansion to order 1. The quantity in

) ) Eq. (9) is the familiar(net) radiative flux vector field,
also known as the single-scattering albedo. As previghereas the quantity in E¢8) bears different names in
ously indicated, we require, to remain constant inside gifferent literatures: scalar flukspherical flux2° or ac-

M for the remainder of the paper. , _ tinic flux.2* At any rate, it is related to the radiant energy
A quantity of particular interest in scattering media or photon density field”

is the phase function’s asymmetry factor:
U(t,x) = J(t,x)/c , (10

+1

g=(pus) = 27Tf MsP(ps) dus (6) wherec is the speed of light, or to mean radiafge
-1 J(t,x)/4m.

. - - . Integrating the RTE in Eq(1) over 2 and usin
whereus = cosbs. This quantity is sufficient to specify Eqs.(2),g(4), (59)’ (8), and(9), qu( o)btain the expressigc])n
the popular Henyey-Greenstein motfel of radiant energyor photon numberconservation, with
1- g2 depletion and creation terms:

[1+ g% — 2gcosbs]¥? '

p(cosbs) = <i> (7)

am c?! %J +V-F=—0.(x)J(t,x) +S(t,x) , (11
used extensively in the following.

In many applications—particularly when multiply whereS(t, x) = [f(t, x, Q)dQ describes internal sources
scattered photons dominate the bulk of the radiatiofrom the standpoint o8 (t, x). Now, in nuclear reactor
field—simple phase functions such as K@) are ade- theory, neutron multiplication is the important source of
quate substitutes for more realistic ones, especially wheparticles. Being proportional to densiiyt, x), this source
one is only interested in fluxes as opposed to radiancesan be modeled by formally makirg(x) < 0 in Eq.(11);

In dense boundary-layer clouds, a realistic phase funequivalentlymo > 1 in Eq.(5) is the multiplication fac-
tion would be based on Mie scattering computations fotor. In that same context, scattering is often considered
spherical droplets followed by averaging over the ob-sotropic,g~ 0 in Eq.(6).

served droplet-size distributioA%This leads ta ~ 0.85 If o.(x) =0 (wy=1) and, in the absence of internal
and justifies using the relation for asymptotically largesources, we see that the mean flow of the photon gas is
particles with respect to wavelength: cross sectiper  irrotational in steady state, then

particle) ~ 2z7r2. Thuso (i.e., cross sectiox density

can easily be obtained from the effective droplet radius, V-F=0, 12

re = (r2)/(r?), and the meteorological quantity known
as liquid water contertttWC) in grams per cubic metre:
o = (2/3)LWC/py e, Wherep,, is the density of water
10° g/m3. Typical values arg. ~ 8 to 10 um, LWC ~
0.7 g¢/m3 henceo ~ 0.05 n'* (highly variablg, which
would correspond td =~ 20 m in a homogeneous cloud.

expressing local radiant energy conservation at all points
in M. Geometrically, Eq(12) means that radiative flux
lines cannot form closed loops, neither can they start or
end inside M, only at its boundapM; several examples

of such radiative flows are provided in the following
pages.

II.C. Fluxes and Radiant Energy Conservation I1.D. Diffusion, as a Self-Consistent Transport Theory
In essence, Eqs2) and(6) characterize the zeroth- We know of at least two roads from the RTE to dif-

and first-order coefficients of the scattering phase functysijon theory, where it surfaces as a transport theory of
tionin a Legendre-polynomial expansionin égsinthe  ;qierest in its own right:

same way, we can project the radiance figld Q) onto

the space of isotropic functions &h with a nonnegative 1. invoking Fick’s constitutive law to close the trans-
scalar coefficient port problem partially posed in Eqgll) or (12)
2. a formal limit in discrete-angl€DA) radiative
J(t,x) = fl(t,x,ﬂ)dﬂ (8) transfer theory.

) Fick’s law relates- to J = cU through
on the one hand, and onto the orthogonal space of dipo-

lar functions onZ, with a vector coefficient F(t,x) = —[D(x)/c]VJ , (13

NUCLEAR SCIENCE AND ENGINEERING VOL. 137 MAR. 2001



MULTIPLE SCATTERING IN CLOUDS 255

whereD(x) is diffusivity, the fundamental quantity in in nuclear reactor theoryw > 1, g =~ 0) is the size fac-
diffusion theory. Itis related to the photorilecal) trans-  tor, ¢,/(@y — 1)¥/?, that determines the critical mass in a

port mfp £,(x) as follows?: given geometry.
For future reference, we define the spatially invari-
D(x)/c = £(x)/3 , (14 ant ratios
and, from there, to extinction n 1
K(w0,9) = ———— = \3(1 ~ @) (1~ @o0)
6(x) = V1~ o9 (X)] , (15 7 (X)La(x)
whereo (x) ~1is the local mfp angjis > O for scattering (18)

preferentially in the forward direction. The transport mfpand
in Eq. (15) is probably the single most important length

scale in diffusion theory. (%) 31— )
In statistical physics, Eq13) is a constitutive law, &(@o,Q) = X _ @o , (19)
which is always paired with a continuity equation, in this Lg(x) 1—-@yg

case Eq(11) or (12), expressing particle-number con-
servation in the course of diffusive motion. Fick’s law is Sometimes called the similarity factér.
intuitively appealing: photons flow from high to low pho- The alternative connection between diffusion and DA
ton concentrations at a rate proportionakt6x). There radiative transfer theories is a relatively recent finding
are many other continuity-constitutive equation pairsby Lovejoy et af> DA radiative transfer theory follows
charge conservation and Ohm’s law, energy conservdtom the RTE in Eq(1) with a special choice of phase
tion and Fourier’s law, fluid mass conservation andfunction made of a discrete sum of Dirdd¢unctions on
D’Arcy’s law, etc. Photon diffusion theory thus inherits Z; the requirement of phase function dependence only
from a vast culture in the physical sciences. on Q-Q' limits the 8's to the vertices of regular poly-
Photon diffusion theory also inherits from the morehedra. The most popular case uses the sixfold symmetry
mathematical culture of probability and statistics: We carPf the octahedrodual surface of the cub¢hat lines up
think of the photons as particles in Brownian motion, i.e. with the orthogonal Cartesian axis: DA photons can scat-
following convoluted “drunkard’s paths” made of a long ter forward(6s = 0), backward 6s = ), or sideways6s =
sequence of short steps in random directions. In thig/2, with four different azimuthal possibilitiegs = 0,
framework of random walk theory, scattering wgh>0  7/2, 7, and 37/2), and the respective probabilities of
is equivalent to short-time directional correlations thathese events add up to unity. By the same token, the new
cause persistent motion in the original direction of theRTE is not an integrodifferential equation but a discrete
beam?3 Rescaling of mfp’s by (1 — wyg) > > 1 in  System of six coupled PDEs for the six fluxes of photons
Eq. (15) accounts for the extent of this drift that cumu- Propagating in+x, +y, and +z directions, where the
lates over several scatterings, afdx) can be inter- phase function integral is replaced by @& scattering
preted as the effective mfp for a single-but-isotropicmatrix. By formally manipulating the phase-function pa-

scattering. rameters in a representation that diagonalizes the scatter-
Combining Egs(11) and(13), we find the parabolic ing matrix, one can emphasize side-scattering to the point
partial differential equatioiPDE) where some of the phase-function parameters take non-

physical (negative values in their natural representa-
tion; at the same time however, the PDE system collapses
onto a scalar diffusion equation and a Fickian vector re-

d
¢!t P V-D(X)V + wa(x)}.) =S(t,x), (16
lation. This approach to diffusion is novel in that it makes

where we identify another characteristic scale, no outright assumptions on the radiance like most other
approaches; only phase functions are changed. It also
Lq(X) = \D(X)/coa(X) presents the standafBTE-baseditheory, DAtheory, and
diffusion theory in a unified formalism where each
=0 (X) " 3(1l- @) (1—we9)] Y2, (170 photon-transport theory has a distinctive mathematical

o character, rather than just a hierarchy of approximations.
known as thelocal) diffusion length. In a homogeneous

medium, the physical meaning bf is that a significant II.E. Diffusion, as an Approximation
number of photons will have been destroyed by absorp- to Radiative Transfer
tion at this distance from their source. The analod @f
There are also well-traveled roads from the RTE to
bWe quote here the standard result from transport theorgliffusion theory that present it as an approximation to
and defer our discussion of the currently debated dependentge more general linear transport theory encapsulated in
of D on g until Sec. II.E. the RTE:
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1. P, truncatior??i.e., at first order in the spherical- ics are excitefl In summary, there is a boundary layer of
harmonic expansion of the RTE thickness~{;(x), x € dM, where photon transport nec-
2. asymptotic theors? essarily is nondiffusive.

. . 2. Concerning temporal behavior, a cursory compar-
From this standpoint, we represent—when and where . ! S
possible—the radiance fieldt, x, ) with the scalar and fSon of the RTE in Eq(1) and the diffusion equation in

e . Eq.(16) reveals that the RTE is relativistically invariant,
vector quantities)(t, x) andF (t, x); we therefore have but its diffusion counterpart is not. Solutions of the dif-

I(t,x,Q) =~ [J(t,x) + 3Q-F(t,x)]/47 , (20)  fusion equation for a pulsed soun@gemporal Green func-
tions) have the equivalent of radiative shocks—unphysical
infinite velocities—at early times. Again, this is because
the photons are still primarily in streaming motion near
the source. One needs to wait a few times scales associ-
ated with the transport mfp to see the accuracy of the
diffusion approximation improve:

When and where is this likely to be areasonable rep- 3. Concerning scattering, it is clear that a phase func-
resentation? The short answer is: not too close to photation that varies over almost five orders of magnit(hialf
sources, especially if they are directional gadlocal-  of which are within a degree or so &= 0) is detrimen-
ized andfor rapidly evolving; not too close to sinks ei- tal to diffusion theory. Unfortunately, this is precisely the

ther. This has ramifications in space and time as well agase in typical cloud environments due to the diffraction
for the scattering and absorption properties of the opticgleak?®
medium. We now visit each item individually.

as can be verified directly by substitution into E¢8)
and (9). In other words,| (t, x,Q) is presumably well-
approximated ot by the sum of an isotropic term and a
dipole term. Using Fick’s lawEq. (13)] with Egs.(10)
and(14), we can eliminate the flux field from Eq20):

4. Concerning absorption, it is clear that the larger

1. Inspace, sources can be internal or at boundarieg o, = (1 — @) o, the lesser is the number of scatterings
Internal ones are often thermal, hence isotropic, which ifor the photon population at large. For a sufficient num-
good for diffusion. In contrast, boundary sources are ofper of scatterings to occur without prior absorption so
ten collimated and sometimes localized too, which is baghat Eq.(20) becomes reasonably accurate, we need to
for diffusion. More bad news for diffusion: Boundaries arehave(, = L. Using the definition in Eq(19), this trans-
generally radiation sinks and often sources as well, dgates toé (wg, g) = 1; hence,
pending on direction of propagatiéh However, a high-
reflectance Lambertigilsotropig boundary is good news. o= 2 (24)
There is a way of stating this requirement quantitatively, 07 3 g’

atleast of conservativ@r, = 1) systems. We leitl denote  yhich is the critical single-scattering albedo for a given
the smallest of M's outer dimensions, whichis then the only, ymmetry factor. For most atmospheric applications

other length scale of any immediate consequence beyond_ 4 75 i 0.85 so we find thatr, should exceed
the(local) mfp €(x) = 1/0(x); we therefore require 0.89 t0 0.93. ’

H/E(x) = c(x)H =1 (22) The next question is of course: Are there fixes for
for photon diffusion to occur. A reasonable cut-off valuethese shortcomings of diffusion theory?
for = is?’ 1to 2 timeg(1— g) % Itis not clear, however,

W\t'erthvsrrflr_ g)ra (n)i)Hmz T/eft(t)r(]) nt(ier(reldsirt]oveﬁ:et;eld lrjr:"tdyl layer problem where the diffusive solution applies in the
everywhere or only most ot thé ime ariable mediay, . of the medium and a photon-streaming solution ap-

SEUC?Z%S \(/:\/lt?i%ﬂs\/.vét:g:)i/n:gﬁe’r(:thgsl?rrl%e(; 'ﬁcg}e dirsiggcl lies close to the boundaries. An approach based on short
q- ' P p characteristicd®2° currently used to accelerate numeri-

thr'o_ugh the smallest c_hor.d O.f M, _the 'h.igher is the Pre%al radiative transfer, may be applicable in diffusion
vailing order-of-scattering; this is intuitive, but we will methods

restate this quantitatively in Sec. VII. In turn, many scat-

terings(less memory of direction to sourgesill make 2. Afirstimprovement on the early-time problem is
Eq. (20) a reasonable representationldf, x,Q2). This  to use the telegrapher’'s equatfmwith both first- and
makes the absorbing boundaries opposite those bounsecond-order derivatives trinstead of the standard par-
aries with sources in optically thick medie.g., the bases abolic PDE in Eq(16); this results from having a time
of dense clouds in daylightook like a good place for derivative ofF(t, x) in Eq. (13), as is normally required
diffusion; unfortunately, diffusion is disrupted near suchby a first-order harmoni@P; ) truncation of the RTE. Pom-
boundaries too because many of the photons that havaning and others devoted much effort into improving
arrived there after many scatterings can now escape lifie performance of diffusion theory near sources and
collective streaming motiofi.e., higher-order harmon- boundaries and in optically thin regions, especially when

1. In space, we are dealing with a typical boundary-
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the fluxes vary rapidly in timéa common occurrence in Ill. THE GENERAL STEADY-STATE

neutron transport applicationg he most powerful ideas ALBEDO PROBLEM

were those of “variable Eddington factors” and “flux-

limited” diffusion 332 In this section, we focus on albedo problems, imply-

. fthe goal o using difusio is o have at hand 3 81 anc constantsource ocate at e prt o
numerically efficient photon transport theory, and y b '

diffusion/P, theory does that, then its breakdown due tOAfter that, we return to time dependence Aadnonuni-
absorption is not too serious because the convergené fm sources.

rates of numerical RTE solvers generally increase with
the relative amount of absorption. If the goal is to have
at hand an analytically tractable theory, then the prob-
lem remains. In fact, challenging observational para-
doxes have risen recentfyfollowing a controversial
prediction by Furutsu and Yamatfahat one should al-
ways usewy = 1 in Eqgs.(14) and (15) to obtainD.
Rewriting Egs.(14) and(15) asc/D = 3o [(1 — Q)wo +
a(l — w@g)], we havea = 1 for the standard prediction Fod(Q + Qo) ,
(used in the followinganda = 0 for the alternative pre-

[1I.A. Boundary Conditions and Responses
in Radiative Transfer Theory

We seek the responséx, Q) in M K E to a steady
and uniform external irradiation from a collimatéce.,
distan} source in some directiof}y (photons travel in
direction—Qy):

diction in diffusion theory, while the more accurate te- 1(x,Q) = X € Msre={x € IM; n(x)- 00 > 0}
legrapher’s equation sugge¥tse = 1/3. A fruitful 0, XE IMgn= IM /Mg

approach here seems to be a careful application of as-

ymptotic transport theory advocated by Aronson and (29

Corngold3® These last authors arrive at~ 1 — (4/5)/

(1 + g) for Henyey-Greenstein scattering; for atmo-
spheric particles withg ~ 0.75 to 0.85, we find
intermediate valuea ~ 0.54 to 0.57.

and no internal source term in Edl). Alterna-

tively, this boundary source can be recast as an

internal source for the diffuse component of the

radiance field, which obeys homogeneous BCs; the
4. With respect to scattering phase functions withsource term in the RTE would then ®(x,Q) =

strong diffraction peaks in the forward direction, there@oo (X)Fo expl—7(Xq, X)]p(—€o- Q) Where Xo(X, Qo)

is a standard fi®¥® where the peak is modeled assa is the piercing point witldiMg,. of the beam going through

function atfs = 0 with a weightf > 0: p(ug) = X in direction,. In atmospheric workk, is called the

f6(1— us) + (1—f)[1+ 39'us], whereg’ = (g —f)/  solar constant. The choice of subscripts refers to the pres-

(1 — f) < g; the popular choice fof is g2. Conse- ence of photon sources on of@nnected part of the

quently, other optical properties are also rescatggl=  convex boundary and photon sinks on the other part.

wo(l—f)/(1 - wof) = @y (= being forwy = 1), and For specificity, consider a geometrically plane-

o'(X)=(1—wmyf)o(x) < o(x). These mappings leave parallel medium, i.e.,

invariant the coefficients on the left side of the diffu-

sion equation in Eq(16), but the source term on the M={x=(xy,2" ER%0<z<H}, (26

right side is more distributed throughout the medium

when used to represent the solar be@s described in where superscript T meanTs transpose. We have
Sec. lll); this improves the performance of the diffu- (sing cosp, sing sing, coso)', where it is customary to
sion moael denote the component of) by u = cosf. Note that this

simple external geometry does not exclude arbitrary in-

The most important question is probably: How rel-ternal variability. For instance, in Fig. 1a, we show a
evant is photon diffusion theory to atmospheric radiatiorplane-parallel optical medium with
transport? King, Radke, and HoBsneasured radiance
distributions inside marine stratocumulus, which are hor-
izontally extended and unusually persistent cloud sys-
tems, hence climatically important. The authors frequently
found angular signatures that can be accurately modeleghereL is the period of the extinction oscillation, inde-
by Eq.(20). An enumeration of less direct, but equally pendently ofy andz, and we requirdo.x = & to keep
compelling, pieces of evidence that radiative transfer ishe field nonnegative. This simple sine-wave cloud model
primarily diffusive in dense boundary-layer clouds atwill be used extensively in the following sections to il-
large, is provided in Refs. 15 and 38. The reasonable sutustrate three different approaches to 3D radiation trans-
cess of asymptotic theory in cloud remote-sensing activport problems.
ity 3® at moderate resolutiofr=1 km) also bears witness In atmospheric applications, E@26) is used to
to that fact. describe a stratiform cloud layer; in this contextis

o(X)=0(X)=a + dc(X)

80 (X) = —80maxCOS(27Xx/L) ’ 27)
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(a) assigned to the vertical. We can therefore Qgt=
([1— 1d]Y% 0, u0) T, 0 < o =1 describing collimated

(i.e., solay illumination from above at an anglé, =

cos ! uo from zenith in a principal plane defined ky=

¢o = 0 (constanty). This natural convention leads to

Mg.={x E R3z=H}

. (28
Mg={x € R3,2=0} 28

oM = Mg U GMsnk{

In many cases, we are interested in the unknown radi-
ance fields at the boundaries: the escapihgnce re-
x=L motely observableradiance fields, not given by the BCs
but by the solution of the RTE. More precisely, we seek
[(x,y,H,Q) for n(x,y,H)-Q(x,9) = u = 0 and
(b) 1(x,y,0,Q) for n(x,y,0)-Q(u,p) = —u = 0. The for-
mer contributes to local reflectan¢er albed9, namely,

R(x,y) = f ml (X, y,H, w, ) dude , (2939

Mo Fo =0

and the latter, to local transmittance,

T(x,y) =

(c) where
/“LOFOZ f |/’L|I(X!y’Hl/~L1¢) dludgo (30)

n<0

o Fo

J | [1(X,y,0,,¢) dude , (29b)
n=0

is the uniform incoming flux, normal to the upper bound-
ary, according to Eq$25) and(28). Note that these quan-
tities are all hemisphericélather than netvertical fluxes.
There is a variety of general-purpose publicly avail-
able numerical transport codes that can compute the
) J boundary fields in Eq9.299 and(29b) as well as inter-
nal fields. Packages such as DANTSYRef. 40, orig-
(d) inally designed for neutron transport, can be adapted to
atmospheric geometries and optics. Currently, the popu-
lar choice in the cloud-radiation community is Evans’s
SHDOM modet?! For a comprehensive survey, we refer
the reader to the ongoing Intercomparison of 3D Radia-
tion CodegI3RC) Web site(http;//climate.gsfc.nasa.gov
I3RC) for details on and performance of each model.

I11.B. Boundary Conditions and Responses
¥ in Diffusion Theory

Fig. 1. Simple modelofaninternally variable, purely scat- In the P, framework, the only available quantities
tering optical medium illuminated uniformly from above, and areJ(x) andF (x), as related by Fick’s law. It is custom-
three approaches for the radiation transport thefejWe take  ary to write the BCs for the PDE in E¢16) as
extinction from Eq.(27) andr(x) = o (x)H for optical depth
where necessary. So there is a single variability scale, period 1 d
of the sine wave, to which a well-defined amplitude is as- | 5 [1 + x € (x) a_Z]J(X) = poFo , X E Mg
signedpomax= . Schematics for three different solutions to this p
problem are illustrated in the other panéls.Flux lines in HPP .
theory as itis generally applied to horizontally variable clouds > [l — xt(x) 3_2] Jx)=0, X € IMsni
by using the mean extinctiofc) Flux lines in the IPA(d) Flux
lines in 3D transport theory, described with 3D diffusion. (31

NI, DN
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wherey{;(x) is the extrapolation length at somes oM,  medium fromR(-) andT(-). For instance, in the absence
and the numerical constagtis essentially a free param- of absorption, the spatial integrd&andT of R(x, y) and
eter used to make diffusion a better approximation to th& (x, y), respectively, add up to unity, aridis the mean
RTE in some respect. From E@1), we note tha does  flux through the cloud divided by, Fo; by energy con-
notvanish atthe lower boundary but, atadistahi¢&J| =  servation,uoFoT should be the result of integrating
x{: below it, J linearly extrapolates to zero. Here again,n(x)-F(x) over any surface inside M that covers its
one can use homogeneous BCsbh,.as well asMg«  boundary(i.e., has the same extentiny). Using Fick’s
whenJ (x) represents only the diffuse radiance field; in thislaw and the lower BC in Eq.31), we find however from
case, aninternal source termisrequiredin(E6.tomodel  Eq. (34b) that the mean value d¥, over the boundary

the deposition of solar photons in the mediugg(x) = domain isugFoT/3y.
@oa (X)Foexpl—7(Xo(X, o), X)]. o

There is no unique method for determiniggfrom I1I.C. Bulk Radiative Energy Budget
previously defined parameters in the problem. To wit, we . . . L
have We now examine radiant energy conservation within

a finite volume. Consider the rectangular parallelepiped,
one-third, from Fick’s law and Eq20) . .
v two-thirds, in Eddington’s approximation Crxy) ={(x,y,z)' € R% x<x' <x+r,
~ 10.7104...,from Milne’s problem , ,
four-thirds, in the optically thin limit . y<y <ytr0=z=H}, (35)

(32) noting that the choice of a squafeather than a circle
It was soon realized that Fick’s law, and thus diffusionfor the horizontal cross section of this cylinder is not
altogether, fails near cloud boundaries as photon trajeémportant for the following but simplifies formulas. Now
tories become more ballistic and less like random walkgntegrate Eq.(11) with 9J/ot = O over all points in
Milne’s problem(a semi-infinite medium with isotropi- C(r;X,y). Using the divergence theorem to replace the
cally scattering and uniform internal sourtegas used Vvolume integral by a surface integral on the left side
extensively as a benchmark for diffusion theory. Noticeand dividing both sides by the total incoming radiation
how Eddingtori? arrived at a value quite close to the ex- (namely,r2uqFo), we obtain

act one. S(r- _ = _ (-
In analogy with Eq(31) for the incoming fluxes, the [R(rx, y)_ U+ [T y) = 0]+ Alrx,y)
unknown flux fields describing the radiation that even- = —=A(r;x,y) , (36)

tually escapes the medium in Eq48a and(18b) are,

respectively, where

9 1. the first ternfin square bracket€omes from the
R(x,y) = [1— x0i(X,y) —}J(x, Y,2) | =1 net flux throughoMg,. N C(r; X, y), with
2/.L0 FO 0z
_ 1 X+r y+r
(333 Ry = [ Rocyndyax
and b Y
1 3 (379
T(xy) = ﬁ[lJr xt(X,y) a—}J(X, Y, 2)| =0 where R(x, y) is obtained from Eq(29a or
Hofo z Eq. (339, depending on whether the RTE or the
(33b) diffusion equation is used to model the transport
o - . process
after normalization by Fo. Combining with Eq(31),
we find 2. same remark for the second term, but through
IMgn N C(r; X, y) this time, so
R(X! y) = J(X, Y-H)/,U«oFo_l (348) 1 Kyt
and T(r;x,y) = ﬁf f T(x,y")dy’dx’ ,
X y
In transport theoryR(-) andT(-) in Egs.(2939 and(29b) . . .
are simple ratios of radiative fluxes. In diffusion theory, \évhergstge integrand is obtained from E29h) or
this is no longer true as soon gs# 1/3 in Eq.(32) be- g.(
cause the assumed relation betwdesnd flux (Fick’s 3. the third term is the net flux through M
law) does not apply near the boundaries. However, it is dC(r;x,y), expressed in units af’u Fy spelled
natural to want to estimate net radiative fluxes inside the out in Eq.(39)
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4. finally, on the right side, we have bulk absorptance

B 1 H ry+r px+r
A(rxy) = = J J f oa(X,y,2)J(X,y',z)dx'dy’dz . (370
r<moFo Jo Jy x

Rearranging the terms in EB6) for easier interpretation, we hatfe
R(r;x,y) + T(r;x,y) + A(r;x,y) = 1—A(r;x,y) (38)

where the only inherently 3D term is

H y+r
A(r;x,y) = JO {f [+F(x+r1,y,2) — F(X, Y, 2)]dy’
y

r?wmoFo

+ fXH [+Fy(X,y+r1,2) — F/(Xy,2)] dx’}dz , (39

with F, andF, denoting net fluxes in th& andy direc-

tions, respectively. It accounts for losses and gains throug the Eq.(1) RTE and Eqs(11) or (12) and (13) for

the sides of th_e column, i.e., phot_on_s that are ot regiffusion. This defines the horizontally homogeneous
flected, transmitted, or absorbed within the confines ofjane-paralle(HPP problem, a standard in many appli-
C(r;x,y). There is at least one sure case where the 3l@ations, including atmospheric science: HPP theory is still

termA(r; x, y) vanishes identicallffor all x, y): Taker = sed operationally in many situations, remote sensing and
L, the size of the computational domain in a numericak|imate forecasting in particular.
simulation with cyclical BCs in the horizontal. We view HPP theory as a reference with which to

In the energy balance equati@8) ofa cloud, orthe - compare “better” theory for a horizontally variable me-
whole atmosphere, onliR(r;-) and T(r;-) can be esti- gium. Presumablyy (z) in Eq.(40) is identified with the
mated from data using radiometers above and below thgyerage value of (x, y, z) over a givere plane; this is a
system. Itis clearly important to find the scalat which  natyral choice becausgeis proportional to particle den-
the contribution oA (r; -) to the radiation budget can jus- sjty, ande (z) would be predicated on the mean density
stratiform clouds like marine stratocumufifs;®as ex- ~ standard HPP theory is based on a voluntary neglect of
plained in Sec. VIII. Another approach that in principle horizontal variability. Effectively, we have imposed a
can work at very small scales is to somehow remove thgirong degree of translational symmetry on the system.

effect of horizontal fluxes empirically. With this in mind, Using Eq.(41) with Eq. (5), the RTE becomes
Ackerman and Co¥ obtained the apparent absorption

A(r;-) =1 —[R(r;-) + T(r;-)] at visible wavelengths, di
whereA(r;-) = 0, and, assuming its counterpart in the ~* dr,

= —[I - wofp(Q-Q’)l(Tz,Q')dQ’ (42
near IR spectrum is comparable in magnitude and sign,

then derived a less-biased estimateAdf;-). An im- ~ in HPP theory, where we have set,d- o(z)dz Leno-
proved version of this technique is described by MarPle*” extensively surveys solution methods. Further-
shak et aft® more, we takey = 0 and
H
T = f o(z)dz= 1y (43
IV. ZEROTH-ORDER SOLUTION: HOMOGENEOUS 0

PLANE-PARALLEL THEORY . . . .
© is the only parameter of interest: tligondimensional

IV.A. Enforced Global Translational Symmetry optical thickness of the slab. Recall thailis the phO-
(Ignoring Horizontal Variability) ton mfp So, ifitis uniform irg, thenr = oH is the slab’s

. thickness in mfp’s. In dense but nonprecipitating clouds,
Within the framework of plane-parallel geometry, . s highly variable at all scales, even wheiris almost

Eq. (26), we now assume constant(e.g., marine stratocumulusHowever, a typi-
o(X)=0(2) . (40)  cal value is 15. Using the cloud microphysical param-
In the absence of horizontal fluxes driven by nonuniform€ters quoted earlier, this translates<0.2 kg/m? of liquid
illumination, we then have cumulated in the droplets and, in turn, this amounts to
only ~0.2 mm of water. There is generally approxi-
9 9 =0 (41) mately two orders of magnitude more water vapor in the
ox’ ay column.
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cos@sin® z Qg = Q(60,90)
Q(0,0) = sin@ sinf T toward Sun at @g =0

p= cosO
4|1
T, =T i | >
i <t . -
=29 | W [ x
! 7., five other free paths
=11 ; (drawn from the same
T ' exponential distribution)
i
1
H At 1 ~ 2 from the upper boundary, there is
y virtually no memory of the original direction in

the radiance field if g = 0; in general, this occurs
at t-t; = 2/(1-g). So flux-lines reach their
asymptotic vertical configuration.

(1 — g)7 > 1 then, for anyQq in the principal(y =
constant plane represented in Fig. 2, there exi$ta
diffusion domain deep enough inside M, where

{FX(TZ) ~0, constanf(l—g) sm=r 48

Fy(m,) =0 O=rn=r71

The value assigned to the numerical constant will de-
pend on the criterion for the onset of diffusive transport;
van de Hulst’ argues for two.

Although there are three spatial dimensions in HPP
theory, it is often referred to as 1D theory because of
the mathematical structure of Eg¢2). Furthermore, there
is a large class of two-stream approximations to HPP

theory?® an idea that actually antedates the RTE it-

Fig. 2. Computation of net horizontal flux at upper bound- se|f47 Basically, one captures the effects of absorption
ary under slant illumination. Four quadrants are defined to 9V, < 1), forward scatteringg = 0), and/or slant illu-
meaning to Eq(31). Quadrants 2 and 3 make up the 'nwardmination’(,u,o = 1) in the various éoeﬁicients that ap-

hemisphere, where radiantiex, Q) is specified by the bound- . .
ary conditions. In the other two quadrants, we find the angulaf:)fear in a tractable system of two coupled ordinary

distribution of escaping radiand®, = 0), as determined by differential equationfODES. This leads to closed-
the radiative transfer equation. We have drawn a typical flu{orm results forT, R, andA as functions of wo,@o, 9, 7).
line in the prediffusive domaif0 < 7, < 2/(1 — g) according

to van de Hulst’) assuming for simplicity azimuthal symme-  |V.B. Steady-State Diffusion in a Homogeneous Slab
try in the albedo field.

An approximation akin to the two-stream model is
obtained by applying photon diffusion theory to a ho-
mogeneous slab. We end up solving an ODEl{z),
[—(d/d2)? + 3(1 — @y)(1 — weQg)o?]J = 0 with BCs
in Eq. (31), where uo does not appear explicitlyi.e.,
separated fronfry). In the conservative cagesy = 1),
we solve a 1D Laplace equation,d/dz)2J = 0. So we

F() = Fy(7) =0 (44)  haved(z) = Jp + J'z, where we obtaidy = o FoTupp
from Eq. (34b); J’' is obtained from the lower BC in
for anyz, anyr, and phase function. Figure 1b illustrates(31): J, — y¢;J’ = 0. We find
the flux lines—the mean photon flow—for this highly
symmetric situation. In the case of slant illumination
(o < 1), we have

If the BCs are axisymmetric, i.eQq = (0,0,1)7,
henceuo =1 in Eq.(25), then we have

J(2) = poFo X Tupp X (1 + 2/x€) . (47)

As remarked earlier, the constant magnitude of the flux
vector,|F,| = (£;/3)J’ from Fick’s law in Egs(13) and
(14), is Typp/3x. The key quantity here is the transmit-
tance of the slab:

F«(H) = LQXI(H,Q) dQ

> Q1 (H,Q)dO . (45)

i=1 Yi’th quadrant

Tupe(ro,1,9,7) = 1/[1+ 220,

} ; (489

Referring to the schematic of the principal plane in i ) i

Fig. 2, we see that contributions from quadrants 2 and where the nondimensional term contains the dependen-
(Q, < 0) come from the BCs in Eqs25) and (28);  Cies on optical parameters,

guadrant 2(Q, = 0) gives zero as soon as the sun H 1 3

is off-zenith (Q, > 0, Q,, = 0 becausep, = 0, — 1-9r = (1-gr (48b)

and Q,, = uo < 1), and quadrant 3Q, < 0) yields 2 x4y 2x 4

—(1— n3)Y2 X Fy. Contributions from quadrants 1 and

4 (Q, = 0) are determined by the RTE'’s solution; in if we opt for y = 2/3 in Eq.(32).

general, they are of unequal magnitude, but if the scat- Unlike the aforementioned result, the popular ver-
tering is rigorously isotropic, then they are equal in magsions of two-stream theory account approximately for di-
nitude and opposite in sign, so they cancel in B2{). rect solar beam effects asy varies over the Earth’s
In summary, we have~,(H) < 0. Conditional that surface. The simplest modeFfs
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1-9r7 tification of bothx andy derivatives with zero, Eq41),
Tupp(10,1,9,7) = 1/ [1+ > } ; (49 from Sec. IV.A. However, instead of neglecting horizon-
fo tal variability altogether, as in Eq40), we rather make
which coincides with Eqs(48a and (48b whenuo =  the following identification:
x =2/3 (6, =53.5 deg. Meador and Weavé? describe
several increasingly sophisticated formulations of the two- o(x)=0(xy;2) , (51)

stream model. To incorporate the nontrivial effectgugf . . .
in the framework of diffusion theory, one would ude where the semicolon now separates the independent vari-

only to model the diffuse component and therefore solv@P!€zfrom the parametersandy. Indeed, onlyzis used
the aforementioned ODE with homogeneous BCs and 4 Solving the RTE in HPP geometry. More precisely, we
source term for direct transmission. The outcome is somé&2ntinue to use HPP theory but with an optical thickness
what more complex than Eq&7) and(48) in that ex- that is(x, y)-dependent:
ponentials are present, even o = 1. u
IV.C. One-Half-Order Solution for Large-Scale m(xy) fo r(xy:z)dz . 2
Properties: Linear Mixing of Cloudy
and Clear Skies Cahalan et at® call this the independent pixel ap-
) ) o proximation(IPA). Figure 1c illustrates diffusive trans-
An _|mportant meteorol_oglcal appllcqtlpn of HPP port under the IPA assumption. In comparison with HPP
theory is to computeapproximately but efficientlythe  iheory in Fig. 1b, flux lines are still parallel to one an-
contribution of solar radiation to the energy budget atyther'and perfectly aligned along the vertical axis; how-

however, to expect the atmosphere to be horizontallyity g |ocal symmetry.

homogeneous at the relatively large scales of interest in
numerical climate modelinggrid points are several hun-
dred kilometres wide The simplest possible character-
ization of subgrid scale variability is to somehow define
a cloud fractionN. We then mix results for cloudy and

V.B. Pixel-Scale Values and Coarse-Graining

At some fine(pixel) scale, we use HPP theory to

clear skies as follows: compute
Fert(2) = poFo Fiea(X,y) = Fuppl -, 7(X, y)] (53
{[NTcloud +(1-N)Tgea— 0, 2z=0 for any radiative quantity of interest: areflectaiiEe= R),
- — _ a transmittancéF = T), or an absorptandd= = A), pos-
£ INRaou (17 N)Raead 2= H sibly aradiancéF =1), etc.; these will in general depend

(50) onthe usual geometric and optical parametgrs @y, g).
Forinstance, we can use results from 1D diffugmewo-
for the net fluxes at the boundaries. Typically, two-Stream transport theory in slab geometry, namely,
stream approximations as in E¢48) or (49) are used to  Eds.(483 and(48b) or Eq.(49) for F = T andw, = 1.
obtain theR's andT’s, sometimes an accurate solutionof ~ The general question of IPA validity at small scales
the 1D RTE in Eq(42). is discussed in Sec. VIII. In practice, the IPA is used to
Since there is no account of horizontal fluxes, nor ofcOmMpute larger-scale quantities by coarse-graining the ra-

the generally continuous distribution of optical depth val-diative response in E453):
ues, we consider this computational device as part of HPP
theory, only a half-step toward accommodating horizons= (rix.y) = EN F (x'.y')] dy’dx’
tal variability. We will call the resultin Eq50 weighted  FPA("%Y) =15 | - | - Fueel-,7 (x5 y")ldy'dx
plane-paralle(WPP) theory.

(54)

V. FIRST-ORDER SOLUTION: THE INDEPENDENT This whole strgtegy is bgsed on the pope that for a large
PIXEL APPROXIMATION enough scale, Tipa(r;-), Ripa(r;-) andApa(r;-) become:
reasonable approximations to the exact coarse-grained
V.A. Enforced Local Translational Symmetry quantities in Eqs(37a), (37b), and(37¢) in the macro-

(Adapting to Horizontal Variability) scopic radiative budget spelled outin E8g). Atthis scale,
the contribution of horizontal fluxeg (r;-) in Eqg. (39),

Remaining with the albedo problem, E(5), in  should be negligibly small becausgn(-) =1 — Tipa(-) —
plane-parallel geometry, ER6), we maintain the iden- Rjpa(-) — Ajpa(-) =0.
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V.C. Randomr Events and Ensemble-Averaging For illustration, one can average the direct transmis-
sion through the sine-wave cloud model in E87):
use Eq.56) with F(7) = Tg;;(7) = exp(—7) andP(7),

1. It is computationally efficient compared to any which is cos[({(7) — 7)/8Tmax]/7 OnN the interval
exact method of solving the full 3D RTE, even in the[(r) — §7max(7) + 67max], O before and 1 after. Equiva-
diffusion approximation, and even if this is repeated manyently, use Eq(54) with r = L and a trivial change in vari-
times at the pixel scale. ables to show that

2. The IPA averages in Eq54) can often be ob-

tained forr large enough in closed forfi,as long as one (Tgir (7)) = f exp—(7) — 0TmaxCOSp)] do/7 .
more hypothesis is clearly stated. 0

The power of the IPA method is twofold:

The new hypothesis is similar to ergodicity in the statis-This yields

tical literature: We replace the spatial average in(G4)

by an ensemble average. In practice, this means that in- (Tair(7)) = exp(—(T)10(6Tmax) (58
stead of summing a la Riemann over all possible piersWherel
each with the same weight, we sum a la Lebesgue ovei ‘ _ ; : L

all possibler values(events, weighting each one by its ?Eg‘r'é;)ggd'r'éé;&g n:ggj{; mg%)lls ::II?V/ e?jtié?: do”rqlg;r; and
_rela_tlve frequency in the ens_emble of all pos;;lble real- Since(9/a7)2T > 0 for 7 >’0 in Fig. 3a, we caﬁ an-
izations. In other words, we integrate E§3) with re- ticipate (T(r)) = T((r)) for aTny,uo W.o a’nd g. Simi-

spect to the probability measure larly, the IPA average of reflectance, e Bupp(7) =1 —
dP(r) = P(dr) T(po,1,9,7)=(1—g)7/[2no+ (1 — g)7] from the two-

= Prob{r =< optical thickness< 7 + dr} . (55  Streamresultin Eq49), willlead to a value smaller than
Rupp({7)) = R(0,1,09,(7)) becausdd/dr)?’R < 0. Ca-
halan et aP* call

o(+) is the order-0 modified Bessel function; so

We will useP(7) to denote ProfD = optical thicknesss
7}, the cumulative probability of. The probability den-

sity function(pdf) of 7 is dP/dr when it exists. SRipa = Ripa — Rupp({7))
Dropping the( presumably weakspatial and scale
dependencies in E@54), we have ~ (Rupp(7)) = Rupp((7)) = 0 (59
_ 0 the plane-parallel bias; it is necessarily negative because
Fipa =~ (Frpp(7)) = o Frpp(7) dP(7) . (56)  the reverse inequality from E¢57) applies here.

Figure 3b show$dRpa| for a specific example, the
The WPP scheme for large-scale fluxes in &) offers  smoothly varying sine-wave cloud model in Eg7) and
a simple illustration of the IPA concept using a probabil-Fig. 1. Any Typp(7) = 1 — Rypp(7) in the form [1 +
ity measure forr. Specifically, there are only two types constantx 7] as, e.g., in Eqs48) or (49). A little alge-
of pixel (cloudy and clegy drawn at random from a Ber- bra then yieldSTypp(7))/ Tupp({7)) = [1— a2] V2 =1,
noulli law: Prolfcloudyt = N, and Proficleat =1 — N;  wherea = Rypp({7)) X 87max/{7); the range of this pa-
Eq. (50) then follows directly from Eqs(55) and(56). rameter is 0= a = Rypp({7)) < 1. Notice how the re-
Equation(56) immediately explains a well-known ef- sulting albedo bias is maximum when the variance of
fect of horizontal variability: systematic albedo reduc-is the largest possible and whér) is at a point(depen-
tion. Notice how we have more flux lines in Fig. U®A  dent on the adopted variability modehat maximizes
schematigthan in Fig. 1b(HPP schematic This is not  the effect ofRypp(7)’s nonlinearity with respect te. If
arbitrary and translates graphically the fact that the overhe pdf is heavily weighted by very largevalues, where
all flux (hence transmittangehrough the system is in- Rypp(7) is almost saturated at unity, the bias will neces-
creased in the improved theo(go albedo is reduced sarily decrease. It is interesting to note that with the
This is a direct consequence of Jensen’s inequélity, typical optical parameters used in cloud studigs=
namely, 0.85, y = 2/3) and relatively strong variability0.7 <
(F(r)) = F((1)) (57) Stmax/{T) = 1), the largest albedo bias€s0.05 are

reached precisely at typical values{af, from ~10 to
as soon a§ (1) is convex, i.e.F"(7) = 0 over the sup- ~50.

port of P(7), i.e., theR domain, where 8< P < 1. The=

is obtained in Eq(57) in only two cases: V.D. Application to Earth’s Climate System
F(r)=ar+b; It is now widely acknowledged by the meteorologi-
or cal community that variable cloud systems transmit more
P(7) = O(7 — (1)) visible_ sunlight than their _hor_nogeneous counterparts
' for a given amount of total liquid water, at least for non-
where®(-) is the Heaviside step function. grazing incidence. As described in Sec. V.C, the IPA
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Fig. 3. IPAtools and case studyw) Taking y = 2/3 from Eq.(32), we plot on the left axiFypp(wo, g; 7) andRypp(@o, g; T)
versus(1 — wog) 7 for g = 0.85 with@g = 1 (e.g., clouds in the visible spectrymndw, = 0.99(e.qg., clouds in near IRIn the
former(conservative scatteringase, we havéypp(1,9;7) + Rupp(1,0;7) =1, Aypp(1,9; 7) = 0; in the absorbing case, we also
plot Aupp(@o, 0;7) On the right axis. We have highlighted the regime where diffusion théamg related two-stream approxi-
mationg work best:(1 — wog)7 = 1, meaningr = 6 to 7 for dense boundary-layer cloufig ~ 0.85,wg ~ 1). Note that
Tupp(@o, g; 7) is convex with respect te, whereaRRypp(wo, g; 7) andAypp(@o, g; 7) are concave; these analytical properties are
characteristic of diffusive transport and explain the systematic effects of variability discussed in the md(in) f&e.plot the
plane-parallel biasSRpa| from Eq.(59) for the sine-wave extinction field in Fig. 1 and EQ7) as a function oRypp(-;{7)) for
conservative scatteringso = 1); also indicatedupper axi$ are some representative values of the domain-average optical depth
(r) rescaled by 2/(1 — g) ~ 8.9 for the typical values used in Fig. 3a. The bias increases with the variability paraimgief
() =1 and with{7) although only up to a point determined Bymax/{7).

approach to radiative transfer at large scales elegantly ex- VI. SECOND-ORDER SOLUTION:
plains this in conjunction with two-stream—hence THREE-DIMENSIONAL DIFFUSION THEORY
diffusion-type—radiation transport theory.

The resulting albedo bias in the 5 to 10% ragéh
respect tqug Fo) seems small until one realizes how much
that modulates the sole energy source of the climate sys- In the previous two sections, we have discussed me-
tem, which is in a close radiative equilibrium. Solar flux dia where there is no cause for net horizontal fluxes to
at the Earth’s orbit i~ ~ 1370 Wm?, and spread over arise(HPP, Sec. IV and a computational devidgPA,
the whole globgincluding night sidg this input is still  Sec. V) where we neglect horizontal fluxes but allow for
(mo)Fo/2 =~ 342 Wm? on averagga typical value at the variability that will surely excite them. We now turn
midlatitudes. Approximately 30% of this energy budget to radiation transport models that fully account for hor-
is reflected back to spadéargely thanks to cloudsbut izontal fluxes. Figure 1d illustrates schematically this de-

a 5 to 10% fluctuation is still 17 to 34 Ykh2 This is the sire with the simple sine-wave medium from Fig. 1 and
number to be contrasted with the mere 4 to ®MWin-  Eq.(27), already used in Secs. IV and V. In the remain-
crease in surface heatifgy enhanced greenhouse ef-der of this section, 3D diffusion theory is used to de-
fect) that would result from an anthropogenic doublingscribe the mechanics of extinction-radiance interaction;
of CO, in the atmosphere. The corresponding changes iwe will follow CannorP® and refer to the dominant pro-
surface temperature, sea level, cloudiness, etc., dependss as radiative channeling.

of course on feedback mechanisms, poorly understood Figure 1d shows the tendency of photons to flow
for the most part. Some of these feedbacks are mediatedound the dense central area and into the more tenuous
by clouds, so cloud-radiative processes need to be adesgions on either side, an example of radiative channel-
quately represented in global climate modéBCMs), ing (Sec. VI.B and Fig. 4 in Sec. VI.BThe fact that the
including the effects of 3D structure if possible. Newflux lines are more evenly spread out at the lower bound-
solar cloud-radiation modules in GCMs that incorporateary than the upper one, where the photons originate, is
the IPA (effects beyond the linear mixing described innot arbitrary; this is caused by the more extensive radi-
Sec. IV.Q are in order and some are currently beingative smoothing in transmittance than in reflectance, as
tested!®:52 explained in Sec. VIILI.

VI.A. Symmetry Broken
(Welcoming Horizontal Variability)
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do>0 do<0 is the(periodically replicategdcomputational domain of
interest in the following. Let
o(X) =7+ oc'(X) (66)

define the extinction fluctuationr’(x); by this defini-
tion, the average of’(x) over M vanishes. Also let

J(X) = Jupp(2) + J'(X)
SIIFIl < 0 8IIF1I> 0 F(X)=Fppp(2) + F'(x)

Fig. 4. Radiative channeling. An originally homogeneous\NhereJ(X) is the solution of Eq(60), with BCs in
plane-parallel medium is restructured internally by removingEq_(Sl) andF () is derived from Fick’s law in Eq(62).

scattering material from the circular region highlighted on th " :
right side and adding it to the region on the left side. Flux Iinees’-rhese quantities are decomposed in the same wayds

are naturally deflected around the dense region and into th& Eq. (6,6)’ but without any prior knoyvledge about their
tenuous one. Flux-line geometry used here assumes diffuse d0lume integralgthey are in fact estimated laer

(67)

if collimated, normal illuminatior(see discussion of Fig.)2 From Egs(61) and(67), we see that the 3D compo-
nent of the solution)’(x), obeys exactly
-V2)' =3(1—-gF(x)-Vo (68)
VI.B. Local Analysis: Radiative Channeling with BCs inzas in Eq.(31) but homogeneous, i.e., van-
as the Symmetry-Breaking Mechanism ishing right sidega fact we will exploit latey. [The in-

homogeneous part of the BC féfx) atz= H is readily
henceo (x) = o<(X) and@yo = 1 in Eq.(5). Substitution accounted for in the zeroth-order HPP solutidfurther-
S . .

of Fick's law [Eq. (13)] and the expression for radiative more, in contrast with Eq63) for the unperturbed field,

ee | i ; J'(x) has an internal source-and-sink-like term on the right
diffusivity in Egs.(14) and(15) into Eq.(12) leads under *. .
these coﬁditio%s(fb ) (15 a-(12) side of Eq.(68) [see Eq(11) with 9/0t = 0].

Retaining only first-order terms i¥io = Vo', J', F’

In this section, we take,(x) =0 in Egs.(3) and(4),

v2l =[VIno]-[VI], (60)  from Eq.(68), we find
soJ responds only to the relative fluctuations®@fx): —V2J' ~ 3(1— g)Fupp Vo
Vino = (Vo)/o. Even with the BC effects discussed ; ; ;
later, this remains largely true. Equati@0) is easier to _ [ « 24 g _ % _]
interpret in the form 0x % T0x% ay 31~ ProFoTuerx o)

-Vl =3(1-g)F(x)-Vo , (61) X o (X) (69
bearing in mind the othef — o — J coupling in Fick's and defer to Sec. VI.C a discussion of the magnitude of
law the neglected terms. The schematic in Fig. 4 illustrates

. the fate of flux-line geometry, as dictated by E9),
F(x)=—-[81-ga(x)] *VJ. (62)  when scattering material is added @ndremoved to an

HPP substrate. Recalling that extinction is proportional

Let Jupp(X) = Jupe(2) be the solution of Laplace’s to local particle density, we see that

equation
V230 =0 (63) 1. where the extinction or density gradient is in the
HPP opposite direction from the unperturbgahd overall flux,
with the BCs in Eq(31). In this homogeneous situation, the right side of Eq(69) is negative. The perturbed flux
Fupe(X) is a uniform vector field; furthermore, the only lines will therefore appear in a converging pattern. To
nonvanishing component {§,) ypp= — o FoTupp/3y.  S€€ this in a simple way, note th@tF' oc —V2J" will
The constanflypep is transmittance, as obtained fragn also t_)e<0, i.e., the same sign as the c_haracterlsnc sink
andr = @H in Eqgs.(48a and(48b). We use here volume- term in Eq.(11). There are examples in the lower left
averaged extinction: and upper right parts of Fig. 4.

1 2. where the gradients are in the same direction as
= f o (x) dx/f dx = TS o(x)dx (64) the average flufthe right side of Eq(69) is >0], the
M M M perturbed flux lines will then diverge from each other
because becaus& -F’ > 0thenlooks like the internal source term
in Eq. (11). (See upper left and lower right portions of
M =[0,L)>?® (0,H) (65  Fig. 4)
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3. elsewhere, there is little variation in(x) along  ten for more convenience (1 — g)o (X)]F (x) = —VJ,
the mean flux lingso the right side of Eq69) is~0].In  yields
this case, flux lines are in a locally parallequidistant _
configuration; see, for instance, the portion of Fig. 4 mid- 31— 9 aFupp = —Vupp (71)

way between the two boundaries. at zeroth order, and

Overall, we see that the response of the photon flow 5
to a positive fluctuation in extinctiofdensity is to de- _ , —r e — (2
flect itself around the correspondingly opaque region. In 31~ glo ' Fapet oF + 0] <az>J (72
the same manner, photons will tend to flow toward and , i i
into the tenuous region related to a negative fluctuationOr @ll the perturbation terms along tieertica) z axis.
in o (). Although in a different settingspectral line trans- . We now integrate Eq.72) term—by-tezrm over M and
fer), Cannof® described a similar phenomenon ob-divide by the total incoming fluxuoFolL*:
served in his early 2D numericgghotons flow into the
less opaque regions by increased scattering in the rez, |
gions of greater opacity;” he called this radiative chan-
neling. In particular, channeling is responsible in Fig. 1d 2. Second term in Eq. (72e exploit the fact that
(3D diffusion transpoptfor breaking the translational sym- the total flux crossing a horizontal cut through M is in-
metry in the vertical direction in Fig. 1dPA transport.  variant inz. This follows directly from radiant energy
conservationy-F = 0, and applies to the perturbation
IV.C. Global Analysis: The Effect of Variability term as well:V-F’ = 0 (becaus&V-Fypp = 0). So we
on Bulk Transport Properties only need to estimate the horizontal integral once: at

We carry onthe aforementioned 3D perturbation analyZ. — 0 We haveF,(x,y,0) = ~uoFoT(x,y)/3x from

sis by incorporating BCs. We wish to determine a globafec' IV.B. The perturbation of its spatial integral is there-

— 2 i
quaniiy stch aS r,)in Eq.(37b), where the averaging- %, e o Brche (SR RET I L SREt
scaler is, in principle, large enough that we can neglectn Eq. (72) thus becomes-3(1 — g) GHST/3y =

the residual dependence on the horizontal coordir?ateé._ 1= q)reT
In practice, we just take = L, the size of the finite hor- (1-9g)78T/x.

izontal computational domain in E69), where we ap- 3. Third term in Eq. (72) It simply yields
ply periodic BCs in the horizontal plane. The transport3(1 — g)H x o'F}/( uoF,), where the(one-poin} co-

problem is specified entirely in the framework of theyariance of the fluctuations in extinction and in vertical
plane-parallel geometry defined in Eq25) and(28). flux is measured by

Now, define the global responses to an arbitrary per-

1. Firstterm in Eq. (72) It vanishes identically be-
se of the aforementioned mass-conservation constraint.

turbation in the extinction field: S 1
_ o'F,=— | o' (XF(x)dx . (73
o0R = R(L,') - Rpr (70a HL M
or Multiplying top and bottom byz, the third term be-

_ comes 31— g)7 X o'F/(TuoFo).
§T=T(L,-) ~ Tupp= —0R , (70b) 1797 X o F/TpoFo)

i i 4. Right side of Eq. (72)Being the volume-integral
because we are in the framework of conservative scalss 5 gradient inz, this becomes the difference between
tering. Of the 3D perturbation, we require only that the horizontal integrals aF' (x) taken az = 0 andz = H.

1.o(X)=F+0'(X)=0 Using Egs.(34a), (34b), (37a, and(37b), this becomes
the difference betweedR obtained az = 0 andéT =
—6R obtained atz = H. The right side of Eq(72) thus
becomes-28R = 256T. In summary, Eq(72) has become

2. theintegral ofr’(x) over M vanishes, as follows
from Eqgs.(64) and(66).

This latter requirement is akin to conservation of total T

mass, equivalently, of the total number of scattering par- _ 4 _ . - e 2z

ticles, because extinction is proportional to the local den- (1-gmT/x+31-97 oroFo 2T . (719

sity of the scattering material. Any scattering mass

redistribution compatible with the former constraint is ~ Grouping similar terms, we can solve f8T. Using

acceptable; in particular, we do not need(x) to be EQs.(489 and(48b), we recognize the multiplier of T

small in any sense. as ¥(3xRupp) = 1/[3x (1 — Typp)]. Thus we can rewrite
Substitution of the meandeviation decomposition EQ.(74) as

in Egs.(56) and(57) into Fick’s law in Eq.(62), rewrit-

oT —6R o'F,
= =3y = . (75)
We are in an effectively ergodic regime. 1-Tupr Rupp a oo
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The preceding formula fa3T is exact in the framework z

of diffusion theory and it is second order in the fluctu- Top-Of-Atmosphere (TOA)  _ _ _ _ _ | e _
ations. In other words, the quanti vanishes in the _ /4\,4
limit of a linear perturbation analysis, as used locally in B /@ -
Eq.(69). We also see that—as predicted from E&f)— _ = £
only the relative fluctuationsr’/&, are important in dif- - 7 geometrical

fusion theory. Finally, the magnitude 6T will depend i ice .

on the specifics of the perturbation, but we can predict
its sign on general grounds&T > 0. Fig. 5. Radiative channeling whery < 1 described sche-

Proof thatST > 0: We only need to consider the matically by typical radiative flux lines. Channeling of photon
numerators in Eq(75). Flux lines define the flux- flow contributes here to both reflectance and transmittance,

vector field completely up to a multiplicative constant: whereas in Fig. 4 only the latter benefits on average, as a second-

At a given point, its direction is given by the tangent 0fordercorrectlon to the HPP ca&ee Sec. VI.¢C Whatever the

. . . . configuration, photons interact collectively with the fluctua-
the line through that point and its magnitude by the 10+, the extinction field like a fluid in a porous meditfh,

cal density of linegnumber of lines piercing a unit sur- always seeking channelpaths of least resistance
face at right angles to the tangefsee Figs. 1b through

1d). Thus, if 6o = ¢’ > 0 (left side of Fig. 4, then

S|F| = —F, < 0, because perturbed lines are the fur-
thest apart here; conversely,df = o’ < O (right side meteorological applications, sun angke= cos ‘ug is
of Fig. 4), theng|F| = —F, > 0, because perturbed an important parameter and, given the huge range of

lines are closer here. In summary, we can safely assegktinction found in the atmosphere, deviations from dif-
that the numerator on the right side of H@5) is pos-  fusion theory need to be addressed. For all practical pur-
itive; hence,8T > 0. Davi$’ provides another argu- poses, illumination is regarded as isotropic in diffusion
ment, using Stephens’s parameterized representtiontheory as used here with BCs in E@1); along with
of his numerical result® Fo, po controls the strength of the illumination but not
_ _ its directivity? It seems natural to require that the illu-
VI.D. Relation of Eg. (75) to the Independent Pixel mination be at least as symmetric as théx) field in
Approximation and Sun-Angle Complications order to obtain the ordering in E¢79). Going back to
L Fig. 2, it is easy to see that anoth@Humination-
o I\TViEEeEfra(rggwork of the IPA, we can define in anal- symmetrig situation that is easier to comprehend is when
9y q- Mo = 1, but, strictly speaking, it is only applicable to
8Tion = Tioa — Tupp(7) = Tupp(7) — Tups(7) , (76)  ©ONE(subtropical location on Earth at a time. The first
A ipa ~ Trpe() = Tueel7) ~ Tueel7) ., (76) inequality in Eq.(79) has indeed been observed to oc-
and we found that cur in the reverse order in numerical simulations, only
_ when uo < 1 however. For instance, the Monte Carlo
0Tipa = ~0Rpa =0 (77) estimates of the IPA biaBpy — R= T — Tjpa by Ca-

as a consequence of Jensen’s inequality in Ref. 55. Hof{@lan et ak* are of either sign, dependent i, and
does this bias compare to the general definitioabfn ~ Cloud variability parameters. o
Eq.(70b) and its 3D diffusion-based estimate in Eg5)? _ The restriction of Eq(79) to diffusion theory and
Imagine a medium where(x,y) = 7 in Eq. (52); azimuthally symmetric illumination highlights the diffi-
yet, every column has a different structurezirSuch a  Culty of obtaining general results in 3D radiative trans-
meaium ha$Tiea = 0 in Eq.(77), yet horizontal fluxes fer. However, the observed violations in the ordering in
will occur, so8T > 0 in Egs.(70b) and (75). Based on  Ed. (79) are not incompatible with the idea of radiative
this example, we conjecture that in diffusion theory forchanneling picture introduced in Sec. VI.C, on the con-

pure scatteringw, = 1), we have trary. To see this, imagine, for simplicity, an isolated cloud
of finite size embedded in an otherwise homogeneous op-
6T =68Tpa=0 (78)  tically thin atmosphere. Now, if that cloud—a strongly

positive fluctuation inr (x)—is illuminated at a grazing
and, from there, angle, then the sunlight is channeled upward into reflec-
T= Tipa = Tapp(7) (79 tance, as well as downward into transmittance, as de-
fined by the local zenith. Compare Fig. 5, a schematic
for any o (x) in plane-parallel geometry that conservesillustration of thesgu, < 1 effects, and Figs. 1d and 4,
mass(samer). Returning to Fig. 1, this explains why,
realistically, there are more flux lines in Fig. 1c thanin  d1o model specifigu, effects in diffusion theory, one must
Fig. 1b and more in Fig. 1d than in Fig. 1c. separate the direct and diffuse components of radiance and write
The conditions under which the ordering in Ed9)  the diffusion PDE for the latter with homogeneous BCsin
carries over to RTE solutions are an open question. land with an internal source term dependenfugn
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where the channeling patterns are symmetric with resmall correlation scaléhe parameter of the model that
spect to the vertical axis. In summary, E§5) shows controls how quickly one goes from a cloudy to a clear
that if ug = 1, then channeling contributes only to trans-element or vice vergaA caveat about the second item is
mittance(reduces albedoon average; this is no longer warranted by our discussion of Fig. 5: Because of slant
the case ifug < 1. illumination, channeling can have little effect on the do-
It is now easy to see why the non-IRéhanneling- main average but huge effects on pixel values. For nor-
driven) component of albedo reduction is of second ormal illumination, however, pixel-scale effects are less
der(hence quite smallunder quasi-normal illumination spectacular, but there is a definite signature of channel-
at large scales: Eq.75) is not robust with respect to ing in the domain averagesee Eq(75)].
deviation fromuo = 1. On the other hand, the well- To illustrate of the relevance of the nondimensional
documenteéf 435157 preak-down of the IPA at small quantity in Eq.(80), we can invoke once more the
scales is traceable, by virtue of the definitions used heresine-wave cloud model in Eq27) and Fig. 1. First,
to localized channeling events under any sun angle. we note that the variability scale has no influence
on the IPA response plotted in Fig. 3b. It is however
VI.E. Criterion for the Onset of Strong Channeling paramount to the channeling. Indeed, we héyg) =
o (27/L) 80 maxSin(2mx/L)|/[ & —80maxCOS(27r/L)]? from
_Whether th(oggh fully diffusive tra_nspo_(as de- Eq.(80). Averaging over the intervdD,L], we findZ =
scribed hergor via just a cou_ple pf scatterings in an RTE- (4/7ho)v/ (1 — 02) Wherev = 80a/(7) is the variabil-
based approact;>® channeling is ubiquitous because itjy, narameter andr,,, = L is the horizontal optical
is a symmetry-reducingentropy-increasingprocess. nickness of the basic cloud cell. This average is diver-
Since channeling occurs to some extent as soon as theggn in the interestingstrong variability limit v — 1-
is any degree of 3D variability, it is desirable to have apacause of the large and slowly changing values of

criterion for the onset of strong channeling. This is nOtl/a'(X) atx~ 0. As a characteristic value. we can. how-
hard to establish because the variability itself gives us @yer take ' '

local length scale to compare with the local mfpx) 2,

namelyo (x)/|V, o|. This is the nominal distance needed d/1
for o (x) to change by once its own value in a displace- {(L/4) = ’ dx <—>
ment along the direction &f, o, which denotes the hor- 7
izontal gradient ofr. More precisely, we are interested

in the gradient perpendicular to the mean photon flow =27 .
through the system, hence the subsctipfor the gradi- Thor
ent operator. Bearing in mind thafd(x) must also be —
on average small with respect to the outer dimensions df the numerator, the variability parametecannot ex-
the system(H andL) to enable the multiple scattering, ¢€€d unity in this model, so the full range ofL/4) is

00 max _

/oL

=27
x=L/4 o

v

(81)

the relevant ratio is therefore controlled byt in the denominator. Equivalently, we
can use the cloud’s aspect ratigH to set the value of

o(x)? 1 l(L/4) = 27w (H/L)v/(7). The thinner is the cell hori-

{(x) = e/ Viol ’ V¢<;> ‘ : (80)  zontally, the more values af(x) each photon samples

(allowed by the numeratpand the stronger are the chan-
So we are looking at the norm of the gradient of localneling (non-IPA) effects, but only up to a point. Extinc-
mfp, transverse to the mean photon flow. We will distin-tion o (x) can vary so fast that most photons traveling
guish three regimes f@f(x) where we anticipate differ- horizontally go through several cells; this happens when
ent radiative behaviors: Thor = T(L/H) < 1, and we might as well be in a ho-
. L , mogeneous medium with the mean extinctionTable |

1. £(x) < 1: “slow” variability. The IPA, possibly gisplays Monte Carlo results for cloud transmissibn
even WPP, theories will become more and more accurat@jith 7 = 15,y = 1, wo =1, and a wide range df/H
ratios. As predictedT is maximum when/ (L/4) in
Eqg. (81) is O(1); also as predictedl — Tjpp = 0.02 is
not large compared foTjpa — Tupp ~ 0.09. Previous
numerical computations for sine-wave media using

2. /(x) ~ 1: “just right” variability. If persistent
enough to see (x) change significantly, strong channel-
ing is likely to occur.

3. £(x) > 1:“fast” variability. If persistent over large

areas, HPP theorffor mean extinctionz) applies be- eThis jump is dominated by the strong direct transmission
cause almost every free path samples almost all th@y;) effect atuo = 1 in the IPA traceable to the exact align-
variability. ment of the fluctuations i (x) and the normal illumination.

) ) . . ) Indeed,Ty;; goes straight from exp-15) ~ 3.10"7 in the HPP
The first and last diagnostics are consistent with the asnodel atv = 0 (formally alsoL — 0) to exp(—15)l(15) =

ymptotic predictions of stochastic radiative transfer in bi-0.10®... for any 3Dmodel (L > 0) with v = 1; I(-) is the
nary mixture$9-3respectively, in the limits of large and modified Bessel function of order (see Sec. V.C
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TABLE | The instantaneous rate of radiant energy release by
Onset of Strong Radiative Channeling at Moderate Values @ll parts of the medium’s boundagM (luminosity in
in Sine- ysi i u i
of £ in Sine-Wave Cloud Models the astrophysical literaturés defined as
L/H T _ ) _ )
(numeric valug? {~0.4XH/LP | (errorx 10%)¢ L(t) LM n(x)-F(tx)dx fMV Fltx)dx . (83
0/15: co (HPP limit) 0.4604(1.9 We can now define the mean escape time as
0.1/15: (0.0067% 60 0.5440(1.8
1/15: (0.0667 6.0 0.5544(1.6) > *
3/15: (0.2000 2.0 0.56231.4) (tescape = tL(t) dt L(t)dt , (84)
10/15: (0.6667 0.6 0.57361.7) 0 0
1%851? Eé'ggg% 8'(%6 gggg&g assuming there is no absorption in the medium, i.e.,
1000,15; (66.667) 0:006 0'.553q1:8) wo = 1 ando,(x) = 0in Eq.(ll)._Usmg the remaining
o0/15: 0 (IPA limit) 0.5524(1.3) terms in Eqg.(11) to express the integrands in E@4),
we have
aThe aspect ratid./H of the (L-periodig cloud model; o o
the ratio is first stated in optical units, whefés held constant f L(t) dt = f J S(t, x) dxdt
at 15 andm,, varies from 0 tooo, then its numerical value is o o Jm ’
quoted.
bCorresponding from Eq.(81). 1 t=o
Transmissionl computed with a straightforward Monte - J(t, x) dx : (85)
Carlo method using the maximum cross-section techiffjue Cl/m t=0
the error onT is quoted for the 1®-history runs. For the large and similarl
jump inT betweerlL = 0 (formally) andL > 0, see Eq(58) for Y
the direct component. o oot
f tL(t) dt = f f S(t, x) dxdt
0 0 M
diffusion theory or the RTE(Refs. 65 and 66confirm + 1 foof J(t, x) dxdt
the aforementioned analysis. cJo Jm
t=00
- - tf J(t, X) dx , (86)
VIl. CHARACTERISTIC TIME AND LENGTH c M t=0
SCALES FOR DIFFUSIVE TRANSPORT _ _ o _
IN SLAB GEOMETRY where an integration by parts in time was applied to the

term intgJ/ot. Since the source term is of finite duration,
we haveJ(0,x) = J(oo, X) = 0, so the last terms in

In this section, we restore the possibility of time £ e 156 anish identically. By substitution into

dependence in the RTE and in 3D diffusion to conside .
nonconstant antbr nonuniform sources, mostly in ho- £dS:(83) and(84), we find that the mean photon path

mogeneous media. This enables us to obtain analyticff"9th from injection to escape is
estimates of characteristic time and length scales for nog;)) — C[{tescapd — (tinject)]
mal and transverse transport phenomena in finite slabs.

We then confront these results with numerics for homo- o o
geneous as well as variable cloud models. Zf f J(t, x) dxdt f f S(t,x)dxdt . (87)
0 M 0 M

VILLA. Mean Dwelling Time For media with absorptiofwy < 1, oa(X) > 0), the
Consider a general time-dependent radiative tran§;[1terpretation of this result is that the photon statistics

fer problem governed by the RTE in E€L), hence the we use for the averaging in EQB?) are conditional to
radiant energy conservation law in H4.1). We only re- escape from Mi.e., before absorption occurs on the way

uire that the source have a finite duration in time, start"Sid€ of M). The unconditional mean photon lifetime
?ng no sooner thah= 0. We can thus define would look like(tescape in Eq. (84) but based on the sum
of L(t) and the instantaneous rate of absorption any-

«© © where in M:
<tinject>=fo thS(t,x)dxdt/JO fM S(t, x) dxdt . f .
2 A(t) = Maa(x)J(t, xX)dx ; (88)
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similarly, the mean photon lifetime conditional to endingnumber of scatterings suffered by photons in an opti-

in absorption would be based dit) alone. cally thick homogeneous medium, from injection to es-
cape, can be estimated as follows:

VII.B. Mean Path Lengths in Steady State and Orders

of Scattering in Homogeneous Media (n) ~ o(A) = UJ I(x) dx/f S(x) dx (91)
M M

The general time-dependent transport result in
Eq. (87) has direct bearing on steady-state problemswhere the error is systematic but certainly less than 1.

Indeed, a photon’s pathlengthis a well-defined geo- Recall thatn) should always be significantly larger than
metric concept even in the absence of a time-dependephity when diffusion prevails.

source, so its mean is simply
VII.C. Relation to Green’s Functions for Slabs

(\) = fM J(X) dx/fm S(x) dx |, (89) in the Diffusion Limit

We now apply this result to a homogeneous plane-
conditional to escape from M, absorption by the boundparallel slab medium, whe®(x) = S(z). Using Eq.(16)
ary dM, rather than absorption in M’s volume. with 9/dt = 0, the scalar flux functior)(z) satisfies

If we are more interested in order-of-scattering stathe following boundary-value problem on the interval
tistics, then we must consider total optical path lengthg < z < H:
which, in general, is expressed as an integral over the
whole trajectory: D’'[—(d/dz)? +1/L3]d = S(2)

out out [1- )(gtd/dZ]\”Z:o =[1+ ,\/ftd/dZ]\”z:H =0
de=f o(x(s)) ds . 90
J (9= ] ox() (90) ©2)
Now, for each unit of optical path length, one scatteringn the diffusion limit, i.e., using Fick's lawF(z) =
on average has occurred. So, on the condition that we D'dJ/dz withD’ = D/c = €;/3. The characteristic dif-
make ac-homogeneity assumption to obtain E§0)  fusion lengthLy = \/D’/o in Eq. (17) naturally reap-
from geometrical path length, oA is approximately pears here.
equal to the number of scatterings from start to end, if If we setS(z) =6(z— z*),0< z* <H, thend(z) =
it is sufficiently large (i.e., we are in a diffusion re- G(z,z*) is the Green'’s function of the boundary-value
gime). In summary, the characteristi@actually meah problem in Eq(92); the explicit expression for & z <
His

min{z, z*} —max{z, 2"} —H
exp —) F(xg - 1)] {exp<—> ¥ eXp(L—d)(){f - 1)]

3 [ < La La
G(z,z") = (E) — SE— ,
2+ (x¢—-1 lexp( L ) + exp( L ﬂ

whereé = {;/L4 is expressed as a function efy andg in Eq. (19). In the case of vanishing absorption where
oa— 0 (alsowg — 1, Ly — oo, andé — 0), we find the simpler expression

<1+ min{z, z*}) <l+ H — max{z, z*}>
3/\/> Xt xt

2 1+ H/2xt,

As z* — H, the § source reaches the upper boundary, precisely where it was placed in the diffusion treatment of
albedo problem in Sec. IV.B. So one would exp€diz, H) to become identical to th&(z) previously obtained in
Eq. (47), but we obtain a numerical factoyd2 here, which deviates from unity ¥ # 2/3. The 3y numerator has
the same value and origin as tHg|/Typpratio found in Sec. IV.A: We do not require Fick’s law to apply strictly at
the boundarieswvhich would otherwise enforcg = 1/3). The 2 in the denominator results from the loss of half of the
strength of source inside the medium: Only the half of the isotropic energy release going dowimi@atde me-
dium) is accounted for.
We can now estimate the average number of scatterings frof®Eqwhere, in this case of &function source,

(93

G(z,z*) = < (94)

H
{(n) %afo G(z,z*)dz , (95)
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because the denominator is unignd ¥2 if z* = 0,H).  invoke Einstein’s law has been developédy Davis
Ultimately,(n) depends on all the nondimensional param-et al'®> Their computations are restricted to the case of
eters of the problemwg, g, 7 = oH, and 0= z*/H < 1. reflection withwy = 1, but that does not affect their in-
dependent estimate ¢p?)r/{(N)r = (4/3)¢;/c, which
VII.D. Extension to Horizontal Photon Transport  is more than twice as large as in E§8). This discrep-
ancy is probably caused by the broadness and skewness
The characteristic order of scatterifgquivalently, of the pdf inn for reflection.
time scal¢ in Eq. (95) can be mapped to a characteristic ~ The square root ofp?) is the characteristic root-
spatial scale that describes the area of the slab-cloud thafean-squarérms) horizontal transport scale; it will de-
is explored by photons during their diffusive randompend on all the nondimensional quantities(ip from
walks, from injection to escape. To this effect, we useEq. (95), plus a length-scalée.g.,{; or H). Physically,

Einstein’s relation for Brownian motion: (p?)¥? measures thégyration radius of the combined
) time-integrated spots of light at the two boundaries, as-
(re(t)) = Dt , (96)  suming as function for the spatial pattern of the source

in (x,y) as well as inz
wherer (1) is the random vector position of the particle
at timet after leaving the origin at= 0, and the constant VII.E. (n)- (F = R,T) and Horizontal Transport Scales
D = ct;/3 is diffusivity. Time is now mapped to the num- for Slab Geometry: Conservative Case

ber of scatterings at escape b
g be by By substitution of Eq(94) into Eq.(95), we obtain

ct~ (1)~ &n)=(n)/o . (97) 3y 7" 2\\ H
. . - (m~—"oH|1+ | (1-5 )= |-
The trick used here is that a deterministic parameter 2 H H /) xt
t = 0 is replaced with the average of a nonnegative ran- (99

dom variable(A)/c. (The determined quantity in these . _ . .
truncated random walks is actualigt) = 0 or H, where Recalling tharH = 7 (optical thickness of the slaland

— _ -1
escape from the slab occur$he implicit assumption is that, = [(1 - glo]™, we have
that the pdf over which the average is performed is nar-  (n)(1,g,7;z*/H)
row enough to be represented by the mean alone. An im-

portant caveat about this assumption relating to reflected 2 e z7\\(1-9gr
light was recently uncovered by Dafis The pdf ofnis ~ o7 1+ H 1- H ¥ - (100
too broad and skewed to make predictions of the higher o _
moments from the mean aloridetails to be discussed  For a source deep inside the meditamd, by asso-
shortly). ciation, transmitted photoswe obtain
Finally, we are interested here in the variagpé)
T o . L 3 3y
of the(x, y) projection of thgstatistically isotropitdis- (n)+(1,9,7) = 3 (1-g72+ 57 (101

placementr in 3D space. An estimate dfp?) using

Eq.(96) is (x?) + (y?) = (2/32“2) = (2/3)Dt, which,  py settingz* = H/2 in Eq. (100 for specificity. As ex-
using Eq(14) for D, leads ta(p*)/(n) ~ (2/9)€;/o". This,  pected, we find thatn)r becomesx(1 — g)=2 asymp-
however, is certainly an underestimate because Eirptically, i.e., wher(1— g)7 > 4y, and this is independent
stein’s law is strictly valid only in a boundless domain, o | (j'e., BC details. We use here the subscript T to
so many events with> H orz < 0 are used that should gesjgnate transmission even though the source is at the
not have entered the averageof, and many of those center plane of the slab.

havep values much smaller than for a typical escape from  The quadratic term in E4101) vanishes identically
the optically thickz-bounded medium. A somewhat bet- it the source is moved to a bounda®* = 0 orH); we
ter estimate is obtained by using Einstein’s law in 2D 516 then left with

(p?(t)) = Dot, where 2D diffusivity isD, = cf;/2. In

summary, we have (Mr(1,9,7) ~ 37 , (102
(p?) b 1 fThese authors are motivated by the idea of using a pulsed
(n) =~ Z - 21— wog)o? (98)  Jaserto measuré\) (based on timeand({p?) (based on im-

aging to infer the fundamental geometric and optical cloud

_ . properties, namelyd and (or o), by active remote sensing
where one can use = 7/H to introduce the macro- (this implies that only reflected radiances can be JisBéa-

scopic cloud properties as needed. However, a unifiefons why this is possible will soon become clear. Time-

time-space theory of photon diffusion in vertically finite gependent diffusion theory plays a central role here, but the
media with the appropriate BCs and initial condition forsignals of interest are not affected by its shortcomings at early
a pulsed point source on a bounddhence no need to times and small distances from the laser beam.
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remembering to first multiply the result in E(R5) by 2 For reflectance, Eq$98) and(102) yield

to account for the loss of source strength in the limit ,

z* — 0,H. That{(n)y is o7 is also a well-known fact in 3% 3y H

radiative transfer theory; we note here that this propor- (?*)r(1.9.7.H) = S == 1-gr (109

tionality law does not depend ag (i.e., scattering de-

tails). Although escapes from both boundaries arerhe more detailed calculation for reflectance by Davis

considered here together, clearly, the lowalues com- et al?S this time in Fourier space, again yields a different

ing from the same boundary as where the source is placegymptotic prefactor(l — g)7 X (p2)g/H2 — 8x/3

dominate in Eq.(102. This is a characteristic of re- as+ — o and the same pre-asymptotic correction

flected fluxes, hence the subscript R. The more detaileghym as for(A\)g/H ~ (n)r/7. At any rate,\[{ p2)r de-

calculation in reflectance mentioned previod8lis based reases quite slowly asincreases, in &2 for a given

?:) e;l_cl:los<e(§—f;)rm 320|U“0n in Laptlﬁce Space. |ttyit?|d3-|. This is enough, however, to make it smaller than
R/M=AN)R/T = £x 8ST — 00 WIth & pre-asymplouc . f¢ ;25 “\hich is asymptotically independent of In

correction term{1 + (¢/2)(1 + 3¢/2)/(1 + €)] =1 in 1 thisis why the endpoints of the flux lines in Fig. 1d

the small parameter = 2y/(1 — g)7 = T/R; this cor- 50 nticipated to be more evenly spread out than their
rection is not small at typical cloud optical depths: Whendeparture points.

€=2/3(r~30if g~ 085y ~2/3),itis still 7/5 = The spatial counterparts of Eq401) and(102), in

1.4, and this is in the direction that makes 02  gqs (104) and (105), respectively, for horizontal—
look more accurate thanyz at these intermediate  gonerq|ly speaking, transverse—particle displacement
values. have not received much attention in the literature. Nota-

Time-domain results similar to EGEL01) and(102 e exceptions are the independent studies by Reynolds,
follow from asymptotic radiative transfer theory, but their jop1<on and Ishima$tiand Weinman and Masutak

derivatior?” in that framework is not as simple to follow espectively, on medical and atmospheric issues. How-
as here. We have already mentioned that they are weller ‘it is noteworthy that simultaneous measurements
known in the sense of the exponentsrofut the pref- ¢ (Mg and(p?)g can be used to infed and (1 — g)r,
actors(and what they depend pare not usually stated. fanda = 7/H from there. Moreover, this can in principle

b

It is sometimes overlooked that it is not the number o e done remotely for clouds using a lidar system with

scatterings that is linear or quadraticriout its mean, at - e ; : : :
) ) ging capability and a wide enough field of view. This
best a typical value. In fact, Dafishowed recently with - 5 jjication, and others discussed in Sec. VIl are bring-

simple scaling arguments that Eq.02 will be a poor 4 E ; Al ;
predictor for the rms order of scatterikig®)¥? because Iz;t?nogp;gelr?c‘l)r;ldr}gt%g?) into the limelight, at least in

the pdf of pathlengtiA (hencen) in reflection is actually
quite broad. Specifically, one finds

VII.LF {(n)gr and the Related Horizontal Transport Scale
(n?)s (A%)n (1-g)r in Slab Geometry: Absorbing Cases

2 (1,9,7) = (L,9,7) =~ (103

(MR Sx We will consider only reflection, so we set = 0 or
) ) H in Eq. (93) and then substitute the result into E§5),

for asymptotically larger. However, this does not deter with the appropriate multiplication by 2. We find

us from using(n)r as a characteristic number of scatter-

ings in the following, largely because theratio in Efp3)  (n)r(wq, g, 7)

remainsO(1) until 7 significantly exceeds /(1 — g) ~

24 under normal conditions in cloudg ~ 0.85, y ~ (3)() [1— exp(—k7)] + k7 (Ex — 1)exp(—«T)

071) ~“\ + — + — !

Using Egs(98) and(101), we obtain the variance of 1+ (€ = DI+ exp=wer)l/2
the horizontal displacement for transmittance: (106

K

3 3x wherek = k(w@o,0) = 1/oLqandé = £(wo, 9), as de-
(p*)r(Lg7H) ~ 16 H? + T&H ’ (104 fined in Egs.(18) and (19), respectively. This general-
izes Eq(102) for @y < 1, noting, however, that retrieving
where the second term becomes negligible whett H,  Eq.(102) from Eq.(106) in the limitwg — 1 (k — 0) at
or (1—g)7 > 1. So{p?)t o« H?, independently of, y, fixed 7, calls for a second-order expansion of the expo-
andg. This is almost what we expect intuitively since we nentials ink7 then application of 'H6pital’s rule.
can visualize a spherical diffusive wave of photons em-  Instead of increasing linearly with indefinitely,
anating from a point at the center=y=0,z=H/2) of  (n)r(wo,q, 7) NOW crosses over to a flat asymptote at
the optically thick slab; when intercepted at the bound-

aries(z= 0,H), its radius isH/2, which is very close to __ bx
\(p?)r in Eq. (104. (Melwo 6,00 =~ el (107
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whenr > 1/k. In the limit@y — 1 (£ — 0) and for very (1-w,9)r, forw =1,9=0.85
larger, we therefore have 1 10
6x e ooor T
<n>R(’lD'0,g,OO) ~ 2 ¢ :
K 10°+ ® E
: B0l g0

1/2 ]
~ 2x<—3 ) (1-wo) 2. (108 e ‘o
1-g .-

At such large optical thicknesses, everything happen
physically as if there were no absorption but the geomet-_
ric thicknesdH of the medium was equated witly; equiv-
alently, ¥/k was its optical thickness in Eq. (102).

As in Sec. VII.E, we can derive from E@98) the
variance in horizontal displacement for reflected photons:

10!

(N (B ,9,7)

e gl

(Nr 1.0 .
2 ~ 2 . .

(p*)r(@0,9,7,H) ~ (2(1_ 00) 72 H® . optical thickness

(109 Fig. 6. Mean number of scatterings in light reflected from
Because the numerator ceases to increase witbr ~ 0mogeneous scattering and absorbing slabs. We compare the

. > h fromt/zV/2 predictions of d|_ffu5|oyiP1_theory(I|nes and curveswith re-

T > 1/k, the behavior ofy(p*)r changes fronH/r sults of a numerical solution of the RT®ymbol3. The latter
to a steeper decrease /7, for giveng and @o.  ere obtained from Monte Carlo simulations for diffusely
Even more importantlyy/{p2)g is a strong function of illuminated homogeneous plane-parallel media with seven op-
1 — @y, which varies far more thag in clouds(with  tical depths from 2 to 128, by powers of 2, and a Henyey-
wavelength across the solar spectjuindeed, we see Greenstein phase function with = 0.85. The absorption

that in the limit@o — 1, Egs.(108 and(109) yield parameter + @y ranges from smallbut nonnegligible at large
7) to the point where diffusion theory is expected to fail ac-
“,<p2>R(wo, g,7,H) cording to Eq(24) wheng = 0.85. We useg¢ ~ 0.5 in Eq.(106)

to fit the numerical data in the diffusion reginte = 10).
H
~ 3L g L) M~ (110
T

T ; : and error and is clearly determined in large part by the
aslong as > 1/x, which is itself increasing aso — 1. f3,\/ factor in Eqs(102) and(106). We recall that the dif-

In contrast with the relatively simple mathematics o ferent implementation of the diffusion model by Davis
diffusion theory leading to an approximate but closed- P y

form result for(nyg in Eq. (106), Platnick® uses a so- et all® for wy = 1 in plane-parallel media leads instead

phisticated adding-and-doubling technique to Obtairtoafactorofa( in Eq.(102); in that version of.the m'odel
accurate numerical estimates(@jg, (n)7, and even the "0t Y&t extended tar, < 1 cases we would likely find
internal profiles of mean order of scattering in both di-X ~.0-75 more suitable than unity, and closer to the ca-
rections. His follow-on study of horizontal displace- "°nical values of 23 and 0.71@...In Eq.(32)

ment focuses on-2(p2)s, which according to Eq98), Figure 7a shows our d|ﬁu5|on—based predlctlon for
is proportional tdn)r /(1 — @, g): being a distance reck- f[he dependenc_e anof the rms horizontal dlsplaqement
oned in optical units, it is a function only of the nondi- in Eq. (109 using Eq.(102) or Eq. (106), respectively,

: ; . for wo =1 andwy = 0.99, 0.95, or 0.90. The analytical
?X%r;ii?lr;al paramete(sr, g,7) andH is never considered results again compare well with the corresponding RTE

results for homogenous cloud models usjng 1.1 this
VII.G. Comparison of Diffusion Predictions with time; again, a more accurate estimate of the prefactor in

Numerical RTE Solutions, and 3D Effects Eq.(98), hence in Eq(106), would bring the effectivey
down by at least half of this value, hence quite close to

Figure 6 showsgn)r(w@o, g, 7) as a function of for  the standard choices. Figure 7b is for random fractal cloud
g = 0.85 and selected values afy: 0.999, 0.99, 0.95, models, which are described in more detail in the next
and 0.9. The formula in Eq106) with y ~ 0.5 follows  section(see Fig. 8. In this case, the abscissa is the mean
quite closely the numerical results obtained by Monteoptical depth, and the RTE solutions are averaged over
Carlo solution of the RTE, at least at optical thicknessall possible source positions and a few realizations of the
large enoughl{r = 10) for the diffusion model to apply. disorder. We see that the agreement would still be ac-
This is true at all the levels of absorption considered. Theeptable forwy = 1 (no absorptiopas long as the pref-
particular value selected for ti¥ 1) extrapolation length actor is further increased. However, we can also see that
constanty in the BCs in Eq(31) was determined by trial the performance of the theory deteriorates rapidlyas
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(a) (1-w,g)t, forw, = 1,9=0.85 (b) (1-w,g)v), forw =1,g =085
1 10 1 10
1 ] L IR R | - 1- L Lol i ol -
1 > Homogeneous clouds ] Fractal clouds
o H=03km H=03km [
NN 3
= slope F
—_ £
£ T E -2 p L
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optical thickness © mean optical thickness (t)

Fig. 7. The RMS horizontdtransversgdisplacement of light reflected from scattering and absorbing slabs. The point source
at the upper boundary is isotropic. Four single-scattering albedgesme used: 1.00, 0.99, 0.95, and 0.90. The optical depth
sequence and phase function are the same as in Fig. 6; the reference lites ¥fecorresponding teso = 1 in Eq.(105) and
oL for wg < 1 andrk > 1 in Eq.(110). (a) Homogeneous plane-parallel media wih= 0.3 km. As in Fig. 6, fitting of the
Monte Carlo data using the numerical extrapolation-length constant leads hgre-tb.1 (further discussion in main text
(b) Same outer geometry and optical properties as in Fig. 7a but extinction is horizontally variable, as described in Sec. VIII
and Fig. 8; in this case, the point sources are uniformly distributed over the upper boundary. The analytical diffusion theory is
unmodified from Fig. 7a, and the resulting discrepancies are discussed in the text.

decreasesgabsorption increasgsWe note that the sign

iati : ; - dedt || oo R_ ((R_) = 0.499
of the deviation of fractal numerical results with respect ¢ (from a 10-seep <S°f_f“13, o (Fred )
to their homogeneous analytical counterparts is cont o, =05 and B = 5/3) R, ((R) = 0.500)

sistent with Jensen’s inequality i{(pZ)R(wo, g,7,H) ; -

is treated similarly toT(uo,@0,9,7) in Sec. V.C. cell number (height 300 m, width12.5 m)
Furthermore, the deviation is small fa#, = 1 be- o @6 82 e ,102‘;8
cause ther dependence is nonlinear but relatively F
weak (~1/7%?), and it is large formy < 1, especially
at large 7 values where the nonlinearity o([<p2>R

is strongen~1/7).

Fo.7
-0.6
- 0.5

0.4
VIIl. RADIATIVE SMOOTHING: THEORY,
VALIDATION, AND APPLICATION TO BREAKDOWN
OF INDEPENDENT PIXEL APPROXIMATION

local albedo estimates,
R (x) & R (x)
IPA MC

local optical depth, t(x)
n
o

0+ T
2 4 6 8 10 12*

horizontal distance, x (km) L= 128 km

Section VIl was concerned mostly with time-domain
computations in homogeneous uniformly illuminated
plane-parallel media and the spatial ramifications for a
é-function illumination pattern. We now return to genu- Fig. 8. Fractal cloud model and associated radiation fields.
ine 3D radiative transfer properly equipped to discuss th&he lower plot and left axis are for the horizontal profile of
practical limitations of the widely used IPA, which, we optical depth through cloud(x) that was generated using a
recall, has a tremendous computational advantage ovBpunded cascadé.Geometrically, the cloud is plane-parallel

any implementation of 3D radiative transfer, even in the/ith thicknessH = 0.3 km; by constructioften cascade steps
diffusion limit. it is made of 20 = 1024 cells, each 12.5 m widaspect ratio

. 12.5/300= 1/24). For the radiative transfer, scattering is con-
Several studie.g., Refs. 5.3' 71,and 726@"‘3 com- servative(wo = 1), a Henyey-Greenstein phase function is used
pared IPA and exact RTE solutions for domain averages, _ 0.85), the sun is at zenithuo = 1), and cyclical BCs are
Considering the variable area-averaged quantities iBpplied. The upper plots are of the local albedo fRe{t) com-
Egs.(37), (38), and(39), the lower bound on the aver- pyted with the IPA(rough dotted ling and by Monte Carlo
aging scale at which the IPA can be used must satisfy(smooth full ling. The effect of radiative smoothingle-
A(r,-) = 0 using the notation from E¢39). An a priori  creased variance at the small scaissobvious in the latter.
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determination of this scale in stratiform cloud types wasNadir Radiance log, 1, r=1/k (m)
obtained by Davis et &f at conservative wavelengths ¢ =0°g 4 3 »
by invoking the theory of radiative smoothing developed .. L . o5

by Marshak et at” In turn, the theory of radiative smooth- ] ~
ing hinges on the rms horizontal displacements com- 15- *~
puted in Sec. VIl in the diffusion limit.

The notion of radiative smoothing was in fact first
described by Stephens in Ref. §b 1833: “For the case 10
p [(7)-doubling step =1 [very small{7)],...thereisa __ ]
one to one correspondence between the structure of th& ]
reflectance and the specified structure of the optical prop-og 51
erties. Asp increaseg(r) gets largé, the spectra oR 2 ]
falls off more and more rapidly with increasindwave-
numbel....These results thus suggest that multiple scat- 0+
tering tends to filter out the fine structure in the radiation
field.” However, it took almost a decade before this qual-

--#--optical depth, T — |

20

log, E (k)

10

itative description was given a quantitative meaning -5 :

through the work of the present authors and co-workers e : ; —mr———t-0
at the National Aeronautics and Space Administration 0 5 10
(NASA), Goddard Space Flight Center. During this time log,,(KL), L=25.6 km

period, the radiative properties of stratiform clouds in the

marine boundary layer were systematically investigated Fig. 9. Wavenumber specti (k) andE, (k) for both IPA
because of their strong impact on the planetary albedand 3D nadir radiance fields. As in Fig. 8, the fractal distribu-
(they are highly persistent and extend over thousands ¢ifns of cloud optical deptlupper curve are obtained using
kilometreg. Geometrically, these stratocumulus are al-bounded cascades set for 13, the standard deviation of in
most plane-parallel, and it is tempting to model them withS 0-5. and8 = 5/3; the variability unfolds in the direction

HPP theory. However, internally they are extremely vari—only' Pixel size is 25 m; cloud top and base are flat and thick-

able?® and the NASA group advocated and used fracta?e:ss(')'__'%_ isg)agerg.aﬁ d"';'gfiﬁ{fg%ﬂ‘s ghof;ge_ ggscltj'lct’:a";'gh
CIO[.Jd mOde|§‘.4 C"?".'e‘.’ bo“!‘ded cascades to simulate th veraged over ten independent realizations. Three single-
horizontal variability in optical depth. For our present PUT-scattering albedoesy are used0.999, 0.98, and 0.9%nd Xs
poses, it suffices to know two things about the key obingicates the scale-break positions(wo).

servations of the stratus clouds and the adopted fractal

models:(a) that the one-point pdf of (X, y) is approxi-

mately lognormal with a mean in excess of 10 dby

that the two-point autocorrelation propertiesix, y)

are described by a power-law wavenumber spectrum: .
low a similar power law, but only down to a few hundred

E,(K) oc kB (111) Mmetresseew, =1 case in Fig. 8 Atthe smallest scales,
below this scale break, there is a significant deficit of vari-
with 8 ~ 5/3 (as predicted in statistical turbulence theory ance, hence the termradiative smoothing. The special scale
for scales = 1/k ranging from at least tens of kilometres at Whlch this scale break occlenvision the intersection
down to only a few metre§i.e., over three decades of Of tWolines onalog-log plot o, (k) versusk]is denoted
scaling. For8 < 3, graphs ofr(x, y) transects are non- "R Extensive numerical experimentation showed ﬂp@t
differentiable, geometrically rough sets; an example i$aS the same dependenceténg, andr (equated with
shown in Fig. §lower plob. By any account, the dimen- the domain-average valu® as \(p?)r in Eq. (105).
sion of a smootHdifferentiablé graph is 1, but the in- SO the diffusion-based theory of horizontal photon trans-
herent dimensioly of this graph is fractal, somewhere portin homogeneous slab clouds captures the basic phe-
between 1 and 2. MandelbrSshows thaDy is given by  homenology of radiative smoothing in highly variable
(5—pB)/2for 1 < B < 3; this yieldsDy ~ 5/3 for g = frac_tal clouds. Inreturn, the ubiquitous obseryatlon ofra-
5/3. Utilization of such naturally rough optical media diative smoothing in real stratocumulus confirms the as-
proved essential in measuring the smoothing power d$ertions by King, Radke, and HobBsabout the validity
radiative transfer. of diffusion as a reasonable model for radiation transport
The IPAradiance fields associated with the fractal opin these dense boundary-layer clouds.

tical depth fields, computed pixel-by-pixel with a 1D ~ The mostimportant application of radiative smooth-
model, have spectra following the same power-lanly  ing theory is to significantly enhance our understanding
the prefactor changgas the optical depth. In contrast, the of why and when the IPA breaks down: At scales below
spectra of the numerically calculated 3D radiance fields folnr ~ 4/(p?)r, Solar photons typically visitvia multiple
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scattering areas containing values too different to ne- IX. SUMMARY, DISCUSSION, AND OUTLOOK
glect 3D effects. Characterizing IPA breakdown is a crit-
ically important task because the IPA is the operational We have described how the relevant radiative trans-
procedure in all current cloud remote sensing with satelfer in clouds calls for multiple scattering and how this
lites. The improved resolution of current and future spaceis precisely what complicates the problem as soon as
borne instruments guarantees that 3D effects are preseame wants to model variability in more than the vertical
in the radiometry and will not go away. In this remote-direction. Although there are even simpler approaches
sensing context, a nonlocal IPA has been developed to the 3D problem that provide partial answers, the dif-
improve the small-scale performance of the IPA withoutfusion equation offers more insight into the mecha-
jeopardizing its computational efficien¢§.The IPA is nisms of macroscopic radiation-matter interaction in a
also used routinely in dynamical simulations on super3D setting than the more physically correct RTE. To wit,
computers of atmospheric processes such as cloud fare derive a general 3D result that appears in &)
mation and evolution. Here again, the timeline oflinking the change in domain-average flux to the covari-
computer memory and speed enhancements guaranteexe of fluctuations in local density and flux, assuming
that 3D radiative transfer effects cannot be neglected foboth mass and number of photons are conserved. Fur-
ever without introducing biases. A computationally effi- thermore, this result illustrates the general mechanism
cient approach such as 3D photon diffusion will becomédy which radiation flows through a variable medium,
necessary and desirable. namely, a radiative channeling, where the photons flow
An important intermediate step in going from the an-around concentrations of scattering material and into the
alytical results for lateral diffusion in highly idealized more tenuous areas. We also used diffusion theory to
homogeneous clouds to real clouds is to compare thegstimate some characteristic temporal and spatial scales
with numerical simulations in the more realistic fractal pertaining to transport through finite scattering media,
cloud models, as was done in Fig. 7b. The deviations bewith and without absorption. These scales are used to
tween fractal and uniform clouds observed there are largeast new light onto channeling processes in clouds as
enough to motivate an in-depth study of these variabilityvell as to find the robust statistical features of remotely
effects. This is indeed a prerequisite to make a priortensed radiance fields where channeling manifests itself.
prediction about the positiong of the scale-breaki.e., For almost four decades, the main motivation be-

where the IPA breaks dowibased on the rms horizontal hind studies of 3D radiative transfer in the atmosphere
transport distanchpZ)R in the presence of absorption. Was the obvious fact that real clouds are not infinite ho-

In the meantime, the energy spectra of radiance fields fdn'°9eneous plane-parallel slabs, and since such homo-

@ = 0.98 and 0.95 in Fig. 9 show the expected trend®N€0US plane-parallel models are the operational
with respect to the conservative casg:decreases rap- standard in meteorology, we need to evaluate the bias

. . o they introduce. Three-dimensional theory is thus com-
idly with @, as doesy(p*)r in Eq.(110). Furthermore, ., 0 't tself for validation and to 1D theory as a bench-
the variance relative to the IPA prediction is less reduce

d b b i I rk. Recently, this paradigm has shifted toward the
aSwo GECTeases because More absorption means 1SS Seafnfrontation of specific predictions of 3D theory against
tering, hence less smoothing.

W b fhigh luti loud i observations, e.g., the scale break in LANDSAT imag-
avenumber spectra of high-resolution cloud Imag-y3s This means that atmospheric 3D radiative transfer
ery from satellites show radiative smoothing and there

. . . e .. .~ ~has matured into a stand-alone science: It has both theo-
fore va!gldate empirically th!s piece of radiative diffusion rqtical and experimental facets and, of course, applica-
theory® More recently, Savigny et l.conducted a scale- ions. For instance, we have pointed out that the space-

by-scale statistical study of time series of zenith radiyime phenomenology of normal and transverse photon
ance at ground level under heavy cloudiness; they wWeligansport in slab geometry described in Sec. VIl is cur-
thus able to extend this validation from reflectance tqently receiving experimental validation. It has also in-
transmittance using the dominant term in Ef)4). Since  spjired new cloud remote-sensing methods, both pa&sive
radiative smoothing is now readily observable as a Stagnd actives

tistical signature of many internal channeling evelts- We have used diffusion theory here exclusively as a
fined in Sec. VI in reference to the structure of photonformalism that facilitates analytical investigations of
flow beyond the IPA, we see that this bestows onto 3D steady-state 3D photon transport, as well as time-
atmospheric radiative transfer the status of experiment@ependent 1D transport, and the problem of steady but
science’® This important milestone was reached in nolocalized sources in 1D and in 3D. However, there is
small way thanks t; /diffusion theory. Although there more to the photon diffusion picture. The diffusion equa-
are still many open questions about diffusion, channeltion, being a standard in mathematical physics, can be
ing, radiative smoothing and net horizontal photon transsolved numerically with extreme efficien€py compar-
port in clouds, insights have been gained on théson with RTE solvers This opens the door to several
fundamental aspects of macroscopic interaction of radinew applications: interactive 3D radiation transport in
ation and matter. 3D dynamical cloud modeling and the exciting possibility
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of 3D optical cloud tomography. The latter example isand the interest that he developed for atmospheric radi-
similar to new developments in noninvasive medical im-ation problems, particularly with clouds, in recent years—
aging through soft tissu@. only a few years that sadly turned out to be his last. The

We have emphasized that diffusion is a self-consisterdauthors met Jerry at the Third Science Team Meeting of
transport theory, a conceptual model where photons travithie U.S. Department of Energy’®OE’s) Atmospheric
on convoluted random walks obeying Gaussian statistiRadiation MeasuremerfARM) Program, March 1-4,
cal laws such as Eq96): distancex \time. We have 1993, in Norman, Oklahoma, through mutual colleagues
not forgotten, however, that diffusion is also just an ap-and friends. At that precise moment, this radiative trans-
proximation to radiative transfer; we underscored its limfer guru was vigorously playing ragtime strides on an old
itations and listed ways of improving on them to someupright. Jerry had many friends—a better description than
extent. As stated early in this paper, diffusion theory apcolleagues here because of his contagious conviviality—
plies only inside the densest clouds the atmosphere ofind these friends were involved in many fields of re-
fers, often residing in the lower few kilometr¢the search. He encouraged his friends to explore new areas
planetary boundary layemDiffusion theory does not work and followed his own advice to the letter and reveled in
at all in the quasi-optical vacuum between clouds, andoing it. We can vividly remember this die-hard urbanite
not much better in the more tenuous clouds alaftoc-  happily romping around the muddy fields of Oklahoma
umulus and cirrus That is why we have propos#da that had just recently been converted into an atmo-
modified photon diffusion theory based on Lévy-stablespheric radiation instrument park at ARM’s Cloud and
(rather than Gaussiasteps between scatterings to cap-Radiation Testbed site. After befriending Jerry in '94, we
ture, in a 1D setting, some of the complexity of 3D ra-met several times again at other atmospheric radiation
diative transfer through a cloudy atmospheric columnmeetings, at seminars he gave at our institutions, at his
This generalization of diffusion theory, unfortunately, doedJniversity of California at Los Angeles office, and at his
not yet have a rigorous mathematical formulation, so wéiome. Only a year ago, we were looking forward, as al-
are left with numerical simulationén 1D) and anoma- Wways, to seeing him again. Indeed, Jerry had enthusias-
lous scaling counterparts to E@6): distancex time'/«  tically agreed to give an invited talk at a special 3D
(1 < a < 2). Using a state-of-the-art optical spectrom-atmospheric radiative transfer meetifg/e organized in
etry to obtain high-resolution scans of the oxygen A-bandJune 1999 to commemorate the career of Georgii Titov, a
Pfeilsticke®! recently showed that the Lévy-flight model prominent cloud radiation expert and a very special friend
naturally explains solar path-length observations under af Jerry’s, who had died of cancer the year before. Alas,
wide variety of cloud covers. by February Jerry had left us. . . .

We have now gone full-circle: from the determinis- Dr. Pomraning was able to convey ideas on the most
tic treatment of the highly idealized sine-wave cloudarcane aspects of stochastic radiative transfer very clearly
model (used by us as well as by others to illustrate thgo lay audiences from the atmospheric community as he
basics of 3D radiative transferto the arguably more explained how the theory applies to their issues. Here,
realistic fractal cloud modeléreated deterministically we hoped to reciprocate somehow for Jerry’s native com-
one realization at a time before ensemble-averaging th@unity of neutron transport theory with the 3D radiative
numerical results in Fourier spageo the Lévy-flight transfer results we have presented addressing atmo-
model for whole-atmosphere photon kinetics, which isspheric radiation problems but using a formalism shared
inherently stochastidit only predicts domain-and- by neutron and photon transport theories. In fact, Jerry
ensemble-average fluxediere is where we meet Jerry Pomraning read an early versirof Secs. Il through VI
Pomraning again. Following the pioneering work ofand offered several constructive comments. It seemed fit
Avaste and Vainikk&? Jerry wrote the definitive bodR  to use thatimproved material here and blend it with more
on transport in random binary mixtures and found a natrecent work.
ural application in broken cloudine%%%3 He also pushed
the envelope of stochastic radiative transfer far beyond
the standard assumption of two extinction values in Mar-
kovian patterns, possibly with atmospheric applications ACKNOWLEDGMENTS
in mind. This work was supported by the Environmental Sciences
Division of the DOE(under grant DE-A105-90ER61069 to
NASA's Goddard Space Flight Cenjexs part of the ARM pro-
gram. We thank N. Byrne, R. Cahalan, R. Davies, F. Evans, M.
King, Y. Knyazikhin, D. Levermore, S. Lovejoy, L. Oreopou-

‘... lifeis anintegral’ los, K. Pfeilsticker, S. Platnick, G. Stephens, G. Titov, J. Wein-
Jerry Pomraning man, and W. Wiscombe for many fruitful discussions. We are
specially appreciative of the insightful comments given to us

We are compelled under the present circumstancesy the late G. C. Pomraning on an early version of Secs. I
to briefly reminisce about Prof. G. C. “Jerry” Pomraning through VI of this paper.

POSTSCRIPT
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